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Themid-Cretaceous Peninsular Ranges orogeny: a new slant on
Cordilleran tectonics? I: Mexico to Nevada1

Robert S. Hildebrand and Joseph B. Whalen

Abstract: The Peninsular Ranges orogeny occurred during the mid-Cretaceous at �100 Ma and affected rocks from southern
Mexico to Alaska. The event resulted from the closing of an Early Cretaceous marine arc trough, named the Bisbee–Arperos sea-
way in Mexico and Arizona, and the Cinko Lake arc trough in the Sierra Nevada. The trough was an ocean that formed after the
Late Jurassic – Early Cretaceous Nevadan orogeny and associated post-collisional magmatism. It was open for �40 million years
and closed by westward subduction. Here, we focus initially on the most complete cross section, located in southwestern Mexico,
where a west-facing Albian carbonate platform, with subjacent siliciclastic rocks built on the western margin of North America,
was pulled down into a trench at 100 Ma, buried in hemipelagic mud and Cenomanian flysch, then overthrust from the west
by rocks of the 140–100 Ma Santiago Peak – Alisitos arc and its substrate, the Guerrero Superterrane, which collectively document
westerly subduction. This tectonically thickened collision zone was exhumed and intruded by 99–84 Ma distinctive post-
collisional tonalite–granodiorite plutonic complexes, all with Sr/Y> 20, Sm/Yb > 2.5, Nb/Y> 0.4, and La/Yb > 10. These geochemical
features are typical of slab failure, not arc magmas. The post-collisional plutons, previously considered to represent arc flare-ups,
were derived from melting of the descending slab following arc-continent collision. Remnants of the arc, basin, related east-
vergent 100 Ma thrusts, flexural foredeep, and 99–84 Ma slab failure plutons are traced from the Peninsular Ranges, through
the Mojave Desert to the Sierra Nevada where similar rocks, relations, and ages occur. Along the western, back-arc, side of
the orogen after collision and slab break-off, but during exhumation, east-dipping reverse faults with >10 km of east-side up
movement shed 100–85 Ma plutonic and other debris westward from the hinterland into troughs such as the Valle and Great
Valley. We extend our synthesis northward, from west-central Nevada to Alaska, in Part II.

Key words: orogeny, North American Cordillera, arc magmatism, arc-continent collision, slab failure magmatism, Peninsular
Ranges orogeny.

Résumé : L’orogenèse des chaînes péninsulaires s’est produite durant le Crétacé moyen, vers 100 Ma, et a touché des roches allant
du sud du Mexique à l’Alaska. Elle est le résultat de la fermeture d’une fosse d’arc marine d’âge crétacé précoce, appelée le bras
de mer Bisbee–Arperos au Mexique et en Arizona et la fosse de l’arc de Cinko Lake dans les Sierra Nevada. La fosse était un océan
formé après l’orogenèse névadienne d’âge jurassique tardif à crétacé précoce et le magmatisme post-collision associé. Elle est
demeurée ouverte pendant �40 millions d’années et s’est refermée par subduction vers l’ouest. Nous nous concentrons dans un
premier temps sur la coupe la plus complète, située dans le sud-ouest du Mexique, où une plateforme carbonatée albienne faisant
face à l’ouest, avec des roches silicoclastiques sous-jacentes accumulées sur la marge occidentale de l’Amérique du Nord, a été
attirée dans une fosse à 100 Ma, ensevelie par des boues hémipélagiques et un flysch cénomanien, puis charriée vers l’est par des
roches de l’arc de Santiago Peak – Alisitos de 140–100 Ma et son substrat, le superterrane de Guerrero, qui documentent collective-
ment une subduction vers l’ouest. Cette zone de collision épaissie tectoniquement a été exhumée et recoupée par des complexes
plutoniques à tonalites-granodiorites post-collision distinctifs de 99–84 Ma qui présentent tous des rapports Sr/Y > 20, Sm/Yb >

2,5, Nb/Y> 0,4 et La/Yb> 10. Ces caractéristiques géochimiques sont typiques desmagmas de rupture de plaque et non des magmas
d’arc. Les plutons post-collision, auparavant considérés représenter des sursauts de magmatisme d’arc, sont dérivés de la fusion de
la plaque descendante dans la foulée de la collision arc-continent. Des restes de l’arc, du bassin, de chevauchements vers l’est reliés
de 100 Ma, de l’avant-fosse formée par flexion et de plutons associés à la rupture de la plaque de 99–84 Ma peuvent être suivis des
chaînes péninsulaires au désert du Mojave et jusque dans les Sierra Nevada, où de roches, relations et âges semblables sont
observés. Le long du côté ouest d’arrière-arc de l’orogène après la collision et la rupture de la plaque, mais durant l’exhumation,
des failles inverses à pendage vers l’est montrant >10 km de déplacement du bloc est vers le haut ont évacué vers l’ouest des débris
plutoniques de 100–85 Ma et d’autres débris de l’arrière-pays jusque dans des fosses comme la Valle et la Grande vallée. Dans la
deuxième partie, nous élargissons notre synthèse vers le nord, du centre-ouest du Nevada jusqu’en Alaska. [Traduit par la Rédaction]

Mots-clés : orogenèse, cordillère nord-américaine, magmatisme d’arc, collision arc-continent, magmatisme de rupture de
plaque, orogenèse des chaînes péninsulaires.
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It ain’t what you know that gets you into trouble. It’s what you
know for sure that just ain’t so.

—Mark Twain

Introduction
In 1969, Warren Hamilton published two seminal papers in

which he inferred — based in part on the Cenozoic volcanic belt
of the Andes — that thousands of kilometres of oceanic litho-
sphere were swept against, and subducted beneath, western
North America to generate the great Mesozoic batholithic belt
and the ensimatic and chaotic Franciscan Formation (Hamilton
1969a, 1969b). At about the same time, Dickinson (1970) noted
the similarity of ages across California and so linked strongly
deformed rocks of the high-pressure, low-temperature Francis-
can complex with sedimentary rocks of the Great Valley Group
and plutons of the Sierran-Klamath batholith as a trench fill –
forearc basin – arc batholith tectonic association (Fig. 1). This con-
cept quickly evolved into amore generalized hypothesis in which
the trench fill – forearc basin – batholithic assemblage, inter-
preted to be the products of eastward subduction beneath west-
ern Laurentia, had an associated fold-thrust belt, located well to
the east, with mostly westerly dipping thrust faults developed in
heated retro-arc crust, and an adjacent, but even more easterly,
foreland basin (Burchfiel and Davis 1972; Armstrong and Dick
1974; Dickinson 1976). A half century later, the essence of this
model is still in vogue and rarely challenged, so the notion of
eastward subduction beneath North America — especially for
the great batholithic belts of the Sierra Nevada, Peninsular
Ranges, and Coast plutonic complex — has become a formidable
paradigm.
Although several contributions have challenged this paradigm

(Moores 1970; Mattauer et al. 1983; Chamberlain and Lambert 1985;
Lambert and Chamberlain 1988; Johnston 2008; Hildebrand 2009,
2013; Hildebrand andWhalen 2014a, 2014b, 2017; Hildebrand et al.
2018), they were, in many cases, broad syntheses covering several
orogenies through time and so these ideas failed to generate trac-
tion within the Cordilleran community. In the aftermath of the
recent kerfuffle about the polarity of subduction in the northern
Cordillera (Sigloch and Mihalynuk 2020; Pavlis et al. 2020a,
2020b), it seemed to us worthwhile and timely to describe a little
known, mid-Cretaceous orogeny that can be traced along the
length of the North American Cordillera from southern Mexico to
Alaska, and perhaps beyond, as it provides evidence on the polar-
ity of subduction in the northern Cordillera. We call it the Penin-
sular Ranges orogeny after the region where we first recognized it
and because the most-complete cross sections of the orogen are
exposed there and in adjacent Mexico.
Although we have argued that other orogenies within the Cor-

dillera involved eastward-facing arcs, we focus on the Peninsular
Ranges orogen because it entailed several of the world’s most im-
pressive Cordilleran type batholiths, which, for over 50 years,
have been taken as proof-positive evidence for eastward subduc-
tion beneath North America. We approach the overall geology of
the orogen from south to north, and our goal is to demonstrate
why we find the long-ingrained hypothesis for eastward subduc-
tion flawed and untenable.

The Peninsular Ranges orogen in its type area
In Southern and Baja California, the largely chaparral-covered

mountains expose remnants of the Early Cretaceous Santiago
Peak – Alisitos arc terrane, comprising shallow-marine clastic
and carbonate sedimentary rocks, deep-water turbiditic fan
deposits, basaltic to rhyolitic volcanic rocks, and 128–99 Ma
calcic, epizonal intrusions ranging from gabbro to granite (Allison
1974; White and Busby-Spera 1987; Almazán-Vásquez 1988a,
1988b; Johnson et al. 2003; Wetmore et al. 2005; Busby et al. 2006;
Herzig and Kimbrough 2014; Clausen et al. 2014; Morris et al.

2019). In California, the basement to the volcano-sedimentary
cover is dominantly composed of metamorphosed and deformed
Jurassic to Triassic metaturbidites, migmatitic schists, gneisses,
and granodioritic plutons, but farther south on the Baja Penin-
sula of Mexico, carbonates and quartzites of Paleozoic age also
occur (Shaw et al. 2003; Todd 2004; Gastil and Miller 1981; Gastil
et al. 1991; Gastil 1993). Near San Diego, an uppermost Jurassic
succession of marine volcaniclastic rocks, collectively named the
Peñasquitos Formation, was folded, in places even overturned,
prior to deposition of the Santiago Peak rocks (Kimbrough et al.
2014). To the south in Baja California (Fig. 2), arc successions over-
step several subterrane boundaries within the Guerrero superter-
rane (Centeno-García et al. 2008), and after Cenozoic opening of
the Gulf of California is restored, form a continuous lithostrati-
graphic unit onto the mainland in Zihuatanejo (Centeno-García
et al. 2011; Duque-Trujillo et al. 2015). Thus, the arc formed atop
and intruded rocks of the Guerrero superterrane as noted by
Dickinson and Lawton (2001a).
The intrusions, dated at 128–99 Ma (Todd et al. 2003; Wetmore

et al. 2005; Premo et al. 2014; Shaw et al. 2014), were informally
termed the Escondido plutons (Clausen et al. 2014) whereas we
called the same bodies, the Santa Ana suite (Hildebrand and
Whalen 2014b). These plutons are both normally and reversely
zoned, isotropic to foliated, locally protomylonitic, sheeted in-
trusive complexes, varying in composition from tonalite through
quartz diorite and granodiorite to leucomonzogranite, locally
with abundant wall rock screens and mafic inclusions, and con-
taining varying proportions of mafic enclaves (Todd et al. 2003;
Todd 2004).
Morton et al. (2014) noted that the westernmost intrusions are

isotropic whereas those farther east are foliated, so that there is a
megascopically visible deformation gradient from west to east,
especially evident in enclaves. In the east, cumulate layering in
gabbroic plutons is now mostly steeply dipping; intrusive con-
tacts are folded, in many places isoclinally, along with their wall
rocks. The mineral foliation is steep and commonly transects
external contacts, and dykes of one pluton within another are
isoclinally folded (Todd and Shaw 1979).
In Baja California, large pre-100 Ma plutons are also strongly

deformed with concordant contacts, transecting cleavage, and
folded wallrocks (Murray 1979; Johnson et al. 1999, 2003). Some
bodies there were recumbently folded (Johnson et al. 2002). Over-
all, the data provide compelling evidence that intrusions of
the Santiago Peak – Alisitos arc are complexly folded sills or sheets
(Hildebrand andWhalen 2014b).

Age of deformation
Premo and Morton (2014) examined a variety of rocks in the Pe-

ninsular Ranges where they found and dated zircon in a pre- to
syn-metamorphic diorite dyke, which yielded an age of 103.3 6
0.7 Ma. They also dated zircon in a post-metamorphic pegmatite
dyke to be 97.53 6 0.18 Ma, which they interpreted to have been

Fig. 1. Cartoon illustrating the fundamental western triad of the
Sierran paradigm. [Colour online.]
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emplaced soon after metamorphism. Additionally, they dated
more than 30 hornblende separates and determined that meta-
morphism took place at or before 100.1 6 0.6 Ma. These age data
are consistent with data collected farther south in the Sierra de
San Pedro Mártir of Baja California, where the age of the defor-
mation is tightly constrained by plutons. There, 100 Ma gabbro,
as well as a 101 Ma gabbro–tonalite–trondhjemite body, are com-
positionally linked to the arc, strongly deformed, and folded
(Johnson et al. 2002; Alsleben et al. 2008; Schmidt et al. 2009)
whereas the post-deformational Sierra San Pedro de Mártir intru-
sive complex yields U–Pb zircon ages as old as 96 Ma (Gastil et al.
2014; Ortega-Rivera et al. 1997). Thus, we consider the deforma-
tional age of the arc rocks to be tightly constrained at 100 Ma,
roughly coincident with the Albian–Cenomanian boundary (Cohen
et al. 2013).

Bisbee–Arperos seaway
The Santiago Peak – Alisitos arc developed along the western

margin of an elongate trough or seaway, termed the Bisbee–

Arperos seaway, after the transborder Bisbee basin and the Arperos
basin farther south, which we interpret to have been parts of the
same basin (Hildebrand andWhalen 2014b). The Bisbee–Arperos ba-
sin developed during rifting of the western part of North America
following the�153Ma Nevadan orogeny and a younger Early Creta-
ceous event, possibly as young as about 140Ma.
In southern Arizona, coarse clastic sedimentation and eruption

of bimodal volcanic rocks in the Bisbee basin were traditionally
considered to have started at around 150 Ma, following Early to
mid-Jurassic arc magmatism (Bilodeau et al. 1987; Krebs and Ruiz
1987; Lawton and McMillan 1999; Dickinson and Lawton 2001b).
However, the oldest sedimentary rocks within the basin were
recently shown by detrital zircon studies and dating of interca-
lated volcanic rocks to have been deposited between 136 and
125 Ma (Peryam et al. 2012). Within the Bisbee Basin, the lowermost
clastic rocks have bimodal northeast–southwest paleocurrents
and reflect shelf, lagoonal, tidal flat, and fluvial environments
(Klute 1991), but pass stratigraphically upwards into an eastward-
transgressive sequence of fining-upwards fluvial to shallow ma-
rine deposits (Peryam et al. 2012). A recent stratigraphic, detrital

Fig. 2. Sketch map illustrating key geological units of the Peninsular Ranges batholith and Aptian–Albian volcano-sedimentary rocks of
the Alisitos – Santiago Peak arc, various terranes of the Guerrero superterrane, and Albian carbonate platforms, mostly located west of
the younger Laramide suture and its related fold-and-thrust belt. The Peninsular Ranges batholith continues the length of Baja California,
as indicated by a conspicuous aeromagnetic anomaly (Langenheim et al. 2014), but the batholith is buried by younger volcanic rocks
south of the state line. Red dots represent drilled and dated core from La Posta plutons (Duque-Trujillo et al. 2015). Rocks of similar age
and lithology to those of the Peninsular Ranges batholith crop out in Zihuatanejo (Centeno-García et al. 2011). Westward-facing Albian
carbonate banks of the Sonora and Guerrero–Moreles platforms were pulled westward beneath rocks of the Guerrero superterrane at
100 Ma during closure of the Bisbee–Arperos seaway. Box labeled “TP” shows location of Fig. 5. [Colour online.]
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zircon, and provenance study of the basal siliciclastic unit in the
basin, the Morita Formation, determinedmaximum depositional
ages (MDAs) for the lower part of the unit to range from 131 to
125 Ma depending on the location (González-León et al. 2020). The
overlying carbonate platform, known in northern Mexico as the
Sonoran shelf, had a well-developed reefal rim or ramp along its
southwest side (González-Léon et al. 2008).
In Sonora, the rocks of the Bisbee Basin sit unconformably

atop deformed Jurassic arc rocks and isoclinally folded, Oxfor-
dian to Tithonian, marine clastic rocks of the Cucurpe Forma-
tion, which were largely derived from post-160 Ma plutonic rocks
of the bimodal Ko Vaya suite (Mauel et al. 2011; Lawton et al.
2020). We interpret rocks of the Cucurpe Formation to be consan-
guineous with the Tithonian Peñasquitos Formation of the west-
ern Peninsular Ranges near San Diego (Kimbrough et al. 2014),
as both formations have similar basements and contain compara-
ble rocks of the same age. Furthermore, both successions were
deformed between about 145 and 139 Ma and are both uncon-
formably overlain by 130–125 Ma rocks. In the east, the Curcurpe
Formation is overlain by rocks of the Bisbee margin; and to the
west, rocks of the Peñasquitos Formation are overlain by the San-
tiago Peak volcano-sedimentary arc complex. Kimbrough et al.
(2014) noted that another succession, the Mariposa Formation of
the western Sierra Nevada, is also of the same age (Snow and
Ernst 2008), has a similar detrital zircon profile, and was intruded
by 125–120 Ma plutonic rocks of the westernmost Sierran batholith
(Lackey et al. 2012a, 2012b).
Farther south, much of east-central Mexico, such as Oaxaquia,

Central, and Mixteca terranes (Ortega-Gutiérrez et al. 1995;

Centeno-García 2005; Keppie et al. 2012), formed a coherent block
and was covered by a westward-thickening siliciclastic prism
capped by a west-facing Albian carbonate platform (Fig. 2),
known as the Guerrero–Morelos platform in southern Mexico as
well as the Valles – San Luis and El Doctor platform in central
Mexico (Lapierre et al. 1992; Monod et al. 1994; Centeno-García
et al. 2008; Martini et al. 2012). The platformwas built upon about
1000 m of Lower Cretaceous red beds, alluvial sandstone, and
conglomerate with thick evaporite deposits and an older meta-
morphic basement (Fries 1960).
Martini et al. (2014) demonstrated that calcareous and siliciclas-

tic metaturbidites of the eastern Santo Tomás assemblage, depos-
ited on easterly derived submarine fans within the basin, were
exclusively derived from North American sources, such as Oaxa-
quia and the Acatlán and Taray complexes, and were sedimento-
logically disconnected frommafic to intermediate volcanic sources
in the arc to thewest (Fig. 3).
The western margin of the Arperos Basin, now preserved in

eastward-vergent thrust sheets, is represented by the Arcelia
and Arperos assemblages, which comprise Aptian volcaniclastic
metaturbidites derived from the west, and are intercalated with
intraplate and oceanic basalts (Tardy et al. 1994; Martini et al.
2012). Overall, the basin shows a clear provenance asymmetry
with sediments derived from the Guerrero terrane and its cara-
pace of arc rocks to the west and mainland-derived sediments to
the east (Fig. 3), so that the Bisbee–Arperos seaway separated the
Guerrero superterrane and its arc from the Lower Cretaceous pas-
sive margin of North America (Martini et al. 2014; Hildebrand
andWhalen 2014b).

Fig. 3. Block diagram modified from Martini et al. (2014) illustrating the dual nature of sedimentation within the Bisbee–Arperos seaway
of southern Mexico and the 100 Ma collision between the Guerrero superterrane and North America. Where sufficient data exist, these
relations are consistent from southern Mexico to Alaska. [Colour online.]
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Closure of the Bisbee–Arperos seaway and arc-continent collision
Perhaps the best cross section of the orogen in southern and

central Mexico is that of the Sierra Madre del Sur, located south
of the Trans Mexico volcanic belt (Fig. 2). There, beginning in the
late Albian, upward growth of the west-facing carbonate plat-
form stopped, as marked by a disconformity atop massive bio-
clastic carbonate and below a few metres of well-laminated beds
of detrital carbonate, breccias, condensed horizons rich in Albian
faunal debris, and ultimately by hemipelagic shale overlain by
Mexcala flysch (Monod et al. 2000). The disconformity, as well as
the rapid tectonic subsidence and burial of the carbonate plat-
form by hemipelite and orogenic flysch, are easily explained by
transport of the platform over the outer bulge to a trench, where
it was eroded; then, as the platform was pulled into the trench, it
was covered by a thin veneer of hemipelagic mud deposited on
the starved outer-trench slope, only to be overwhelmed by
trench-fill turbidites upon arrival in the trench axis (Fig. 4). East-
erly vergent thrust faults inverted the basin and thrust basinal fa-
cies rocks and basement of the Guerrero superterrane onto the
North American margin, where it originated prior to rifting and
formation of the basin (Fig. 3).
To the west of the carbonate platform, several kilometres of

calc-alkaline and tholeiitic metavolcanic and metasedimentary
rocks of various arc assemblages within the Guerrero superter-
rane (Centeno-García et al. 2008), including, from west to east,
the Zihuatanejo, Arcelia, Taxco – Taxco Viejo, and Teloloapan
assemblages, have U–Pb ages and prominent age peaks ranging
from 141 to 124 Ma (Talavera-Mendoza et al. 2007; Campa-Uranga
et al. 2012), the same age as the passive margin succession on the
eastern side of the Bisbee–Arperos trough. The easternmost units
of the Teloloapan terrane were thrust over the west-facing, domi-
nantly Albian Guerrero–Morelos carbonate platform and its syn-
orogenic cover of Cenomanian Mexcala flysch (Fig. 5) at about 100
Ma. Some researchers (Mendoza and Suastegui 2000; Guerrero-Sua-
segui 2004; Talavera-Mendoza et al. 2007) argued that the eastern-
most Teloloapan metavolcanics, which are penetratively deformed
and recumbently folded, but at relatively low metamorphic grade,

were overlain by a different, but much lesser deformed, carbon-
ate platform just west of the Guerrero–Morelos platform and
place the suture along its eastern boundary. Here we note that
because both carbonate platformal successions formed during
the Albian and are overlain by similar Cenomanian clastic suc-
cessions, we interpret them as formerly continuous units dis-
membered by thrust faults. We locate the suture along the
Teloloapan thrust (Fig. 5), which places the older volcanic succes-
sions eastward over the Albian carbonate platform and its over-
lying orogenic Mexcala flysch as originally envisioned by Campa
and Coney (1983).
In the north, the Sonoran platformwas buried by at least 1500m

of westerly derived Cenomanian and Turonian flysch, termed the
Cintura and Mojado formations, and deposited in a flexural fore-
deep (Mack 1987; González-Léon and Jacques-Ayala 1988). The most
southwestern exposures of Cintura Formation are in excess of
2000 m thick and are overlain gradationally by latest Albian –

early Cenomanian fluvio-deltaic sandstone with sparse pebbles
of quartzite and limestone, and overthrust from the southwest
by plutonic rocks (Jacques-Ayala 1992; T. Lawton, personal com-
munication 2014). Lawton et al. (2020) established the temporal
correlation between the Mojado and Cintura formations by U–Pb
studies of detrital zircons and ash beds, which aid in understand-
ing the nature of the foredeep as far to the east as El Paso, Texas.
The tectonic subsidence was caused by downward flexure of

the lithosphere when the leading edge of the North American
margin was subducted beneath the Guerrero superterrane and
its Lower Cretaceous arc carapace (Pubellier et al. 1995; Martini
et al. 2014). The Cintura Formation is overlain in Sonora by con-
glomerate of the Cocóspera Formation interbedded with ande-
sitic lava dated by 40Ar/39Ar as 93.36 0.7 Ma (González-León et al.
2011). Anderson et al. (2005) also described the thrust belt in some
detail and, based on the age of a pluton that cuts mylonites of the
zone, determined that the deformation was older than 84Ma.
Taken in its entirety, the evidence in western Mexico suggests

that the Alisitos – Santiago Peak arc, and its basement, collided
with a west-facing passive margin at about 100 Ma during the

Fig. 4. Detailed cross section of the uppermost few metres of the west-facing Guerrero–Morelos carbonate platform showing the rapid
transition from carbonate shelf to orogenic deposits near Concordia, Estado de Guerrero. Hoffman (2012) presents an excellent overview
of the process of platform foundering at the beginning of orogenesis. Figure modified from Monod et al. (2000). For location of section,
see Fig. 5. [Colour online.]
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Peninsular Ranges orogeny. The polarity of subduction was clearly
westward and the western edge of the North American passive
margin was partially subducted beneath the arc. The basin was
apparently a linear trough of unknown width that was open for
at least 30 million years, but it must have been sufficiently wide
to be floored by oceanic crust to drive the 100 Ma collision. If we
assume that half of the 30 million year timespan was spreading,
then at moderate spreading and convergence rates of 5 cm/year
(M€uller et al. 2008), the basin would have been about 750 km
wide: about three-quarters the maximum width of the Sea of
Japan.

Post-collisional plutonism and exhumation of the orogenic
hinterland
Soon after collision and terminal closure of the basin, seem-

ingly within a million years, the collisional hinterland was
intruded by a voluminous suite of post-collisional 99–86 Ma mes-
ozonal to catazonal plutons (Fig. 6). The bodies were intruded
during a period of rapid exhumation when rocks at depths of 15–

23 kmwere brought to the surface in less than 10million years by
detachment faulting and collapse (Krummenacher et al. 1975;
Ortega-Rivera et al. 1997; Ortega-Rivera 2003; Miggins et al. 2014).
Rapid exhumation is also documented by abundant coarse plu-
tonic debris of the Valle Formation, such as boulder beds contain-
ing clasts up to 2.5 m in diameter, as well as abundant 100–90 Ma
detrital zircons deposited during the Cenomanian–Turonian, in
a basin located to the west of the collision zone (Kimbrough et al.
2001). As this basin was located west of the former arc and colli-
sion zone, that is, on the opposite side of the arc from the trench,
it cannot have been a forearc basin. The debris was probably shed
from reverse fault scarps, some with 3–4 kbar of 100–86 Ma exhu-
mation across them, that bounded the hinterland belt to the
west (Schmidt and Paterson 2002; Schmidt et al 2014; see also
Supplementary Fig. S12).
The post-collisional intrusions form a group of gregarious plu-

tons, collectively termed the La Posta suite, after a composition-
ally zoned intrusive complex that spans the international border
(Walawender et al. 1990). The plutons are mesozonal to catazo-
nal, range in age from 99 to 86 Ma (Premo et al. 2014), possibly

Fig. 5. Geological sketch map showing relations near Teloloapan, west-central Mexico, illustrating metavolcanic and metasedimentary
rocks of the Roca Verde, Taxco–Viejo, and Teloloapan arc assemblages thrust over the west-facing Guerrero–Morelos carbonate platform
and its overlying syntectonic cover of Mexcala flysch along the Teloloapan thrust. Modified from Cabral-Cano et al. (2000). Detailed
section at Concordia (Fig. 4) marked by star. See Fig. 2 for location of figure. [Colour online.]
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young eastward (Ortega-Rivera 2003), and are dominated by
large, concentrically zoned complexes comprising biotite–
hornblende-bearing, tonalitic marginal phases grading inward
over several decametres to granodiorite and cored by granite, in
places containing both biotite and muscovite (Hill 1984; Silver
and Chappell 1988; Walawender et al. 1990). A diagnostic charac-
teristic of the bodies in the field is the presence of euhedral titan-
ite (Silver and Chappell 1988).
The plutons were emplaced mostly to the east of the Santiago

Peak – Alisitos arc, although a few intrude the easternmost arc
plutons. Thus, there are two, side-by-side intrusive suites, the arc-
related Escondido / Santa Ana and the post-collisional La Posta.
Plutons of the Escondido / Santa Ana arc suite are mainly epizo-
nal and compositionally more variable, ranging from gabbro
to granite, than the younger, post-collisional La Posta plutons,
which are dominantly granodioritic to tonalitic.
These two different intrusive suites, each with different ages,

depth of emplacement, and composition have been recognized
for some time (Buddington 1927; Larsen 1948; Silver et al. 1979;
Silver and Chappell 1988; Gromet and Silver 1987; Gastil et al.
1975, 1990; Kimbrough et al. 2001; Tulloch and Kimbrough 2003;
Ortega-Rivera 2003). Most researchers agree that the older San-
tiago Peak – Alisitos rocks represents a magmatic arc, but also
infer that the younger La Posta magmatism represented a contin-
uation of arc magmatism, despite development of numerous
models that invoke closure of back-arc basins and collisions just
prior to their emplacement (Silver and Chappell 1988; Gastil et al.
1981; Gromet and Silver 1987; Todd et al. 1988; Walawender et al.
1990; Busby et al. 1998; Johnson et al. 1999; Ortega-Rivera 2003;
Schmidt et al. 2014).
Kimbrough et al. (2001) tied together many critical elements,

including the post-deformational nature of the La Posta suite, the
rapid exhumation, and coeval sedimentation to the west, which
they viewed as the fore-arc region, but they attributed the La
Posta suite to a transient episode of high-flux magmatism.
Tulloch and Kimbrough (2003) expanded on the earlier model by

recognizing that the La Posta suite was a high Na, Sr and low Y
suite and so created a model in which the older, western and low
Sr, Y Santiago Peak – Alisitos arc was underthrust beneath the
mainland arc during slab-flattening, which shut off normal arc
magmatism and generated the burst of La Posta magmatism. In a
more recent contribution, Centeno-García et al. (2011, p. 1793)
noted the strong ties between the history of Baja California and
the Guerrero composite terrane of mainland Mexico and so
speculated that the arc was separated from the continent by a
marginal basin, which closed “when the Early Cretaceous Alisitos
fringing arc underthrust the Mexican continental margin and
the crust was greatly thickened” also without explaining how the
arc ended up on the lower plate and the continental margin on
the upper.
Hildebrand and Whalen (2014b) examined recent inductively

coupled plasma – mass spectrometry geochemical data and, to
resolve the tectonomagmatic difficulties, proposed that the two
plutonic suites were emplaced in two different tectonic regimes
separated by a 100 Ma arc-continent collision. The collision
resulted from the closure of the Bisbee–Arperos seaway, which
had formed along the western North America margin at about
140 Ma (Fig. 4). That the plutons were emplaced during rapid ex-
humation suggested to us that the post-collisional bodies formed
by some mechanism related to slab break-off (Sacks and Secor
1990; Davies and von Blanckenburg 1995). It is the depth of break-
off that largely controls the width of the orogen, for it is the
rebound of the partially subducted continent that will lead to the
region of intense uplift and exhumation (Duretz et al. 2011, 2012;
Duretz and Gerya 2013). Thus, shallow break-off creates narrow
orogens, lower-grade metamorphism, and intense, rapid, and
higher rates of exhumation, whereas deep break-off creates
broad orogens with higher grades of metamorphism and slow,
more subdued rebound (Duretz et al. 2011).
The process of arc-continent collision and slab failure, or

break-off, involves the pulling of the leading edge of the conti-
nent beneath the arc. When the competing buoyancy forces

Fig. 6. U–Pb zircon ages with 2r errors for the Peninsular Ranges batholith plotted versus general longitude. Modified from Premo et al.
(2014) with additional ages from Shaw et al. (2014), Gastil et al. (2014), and Wetmore et al. (2005). The pluton ages prior to 100 Ma are not
aligned by geography, but by age, because most researchers recognized that the western Santa Ana arc suite did not migrate with time
(Silver and Chappell 1988; Shaw et al. 2014). [Colour online.]
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between the oceanic and continental lithosphere are overcome,
the sinking slab tears from the lower continental plate and sinks
into the mantle. Unless the tear is diachronous, the collision
stops at this time, the trench dies, and the continental margin,
now free of its oceanic anchor, rapidly rises thereby generating
extreme exhumation rates in the collision belt. Well-understood
ongoing arc-collision belts, such as Taiwan, provide a timeline
of 4–5 million years for arc-continent collision in the south, slab
break-off, collapse of the mountain belt in the northern part
of the island, and initiation of oppositely directed subduction
beneath the Ryukyu arc (Viallon et al. 1986; Suppe 1987; Lallemand
et al. 2001; Huang et al. 2006; Teng 1996). In the case of the Penin-
sular Ranges orogen, the short time from initial collision of the
arc, which had relatively thin crust, as documented by the pres-
ence of intercalated marine sedimentary rocks in the arc, to
slab break-off — as well as other severe problems discussed by
Hildebrand (2013, p. 82) — preclude crustal thickening by arc
magmas and melting of underthrust cratonic crust, both of
which are integral components to the cyclic arc model of
DeCelles et al. (2009).

The recognition that the two magmatic suites were emplaced
in contrasting tectonic settings led to the construction of a vari-
ety of geochemical discrimination diagrams (Fig. 7) that provide
evidence for the distinction between arc and post-collisional plu-
tons, and are especially useful where the geology is difficult,
obscure, or incomplete. These discrimination diagrams were veri-
fied with Cenozoic arc and post-collisional rocks where the tectonic
setting is independently known (Hildebrand and Whalen 2017; Hil-
debrand et al. 2018). We also devised a protocol for their use
(Whalen and Hildebrand 2019), and then tested their usability with
multiply deformed and metamorphosed volcanic and plutonic
rocks in the Paleozoic Taconic orogen (Hildebrand and Whalen
2020). We discuss our model for the petrogenesis of these rocks fol-
lowing a description of the Sierra Nevada where additional data
from plutons in a similar tectonomagmatic regime helps to unravel
their petrogenesis.
As we describe parts of the orogen farther north, it is impor-

tant to keep in mind that the best exposed cross section of the
orogen is in Mexico and not all of the more northerly cross sec-
tions are as complete, or obvious, as they are complicated by

Fig. 7. Plutonic samples with SiO2 >60% from the Peninsular Ranges batholith plotted on five discrimination diagrams modified from
Hildebrand and Whalen (2014b, 2017) and Whalen and Hildebrand (2019). The Nb vs. Y and Ta vs. Yb discrimination diagrams were
modified from Pearce et al. (1984) by addition of fields for post-collisional and arc plutons based empirically on samples from the
Peninsular Ranges batholith. ORG, within-plate granite. Alisitos volcanic arc data are generally more mafic and are from Morris et al.
(2019). [Colour online.]
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younger orogenic events, intrusions, or cover. Nevertheless, we
find that along strike, sufficient components of the orogen exist
to ascertain that it is continuous and coeval from Mexico to
Alaska (Fig. 8). In most locations, several of the following features
exist and collectively constitute a rationale for correlation and
continuity along strike.

1. The occurrence of an Early Cretaceous trough, 140–100 Ma,
comprising volcano-sedimentary arc successions formed on a
substrate of Jurassic orogenic rocks, commonly atop Paleozoic
cover.

2. A >100 Ma arc with magmatism that overlaps temporally
with sedimentation in the trough and is located along the
western margin of it.

3. Sedimentation within the trough that deposited different age
debris adjacent to opposite sides of the basin.

4. The consilience of deformation of the volcano-sedimentary
arc successions, shutdown of arc magmatism, eastward-verging
thrusting, and formation of an orogenic foredeep— all at about
100 Ma.

5. Post-deformational plutons, with compositions distinct from arc
plutons, and ranging in age from 99 to 84 Ma, were emplaced
into an orogenic hinterland during rapid exhumation.

6. Reverse faults, typically with 6–10 km of east side up separation,
formed along the westernmargin of the orogenic hinterland.

7. Sedimentary rocks, most commonly Cenomanian to Santonian,
containing abundant post-collisional plutonic debris were shed
westward into the back-arc region during exhumation of the
hinterland to the east.

Whereas the trough opened along a largely Jurassic accretion-
ary margin, it contained a wide variety of rocks ranging in age
from Precambrian to Cretaceous and grouped inmany ways from

area to area. In some places, such as Mexico, the Guerrero terrane
refers to the westernmost outboard terrane, but in other places
along strike, rocks had not been grouped into older terranes and
groups, or were previously part of named terranes, but were dis-
membered and now occur on both sides of the trough. For exam-
ple, in the Canadian Cordillera, the more easterly Intermontane
and westerly Insular superterranes collided during the Jurassic,
but rifting during opening of the seaway at 140–135 Ma, did not
occur at precisely the same location(s) as the previous suture, so
although the western block was dominated by rocks of the Insu-
lar terrane, it could contain fragments of Intermontane terrane
and form a new western composite terrane. The lack of recogni-
tion of this 100 Ma suture zone led to some implausible models
involving reversed basins and large-magnitude strike-slip faults
(Monger et al. 1994; Gehrels et al. 2009). By recognizing the exis-
tence of the Early Cretaceous seaway, we resolve these types of
problems to some degree, but the problem of previously defined
terranes occurring on opposite sides of the basin is an artifact of
problems inherent in the existing nomenclature. To resolve these
issues, we refer to all of the rocks on the outboard arc-bearing
block, which appear to have formed a continuous ribbon conti-
nent, as the Peninsular Ranges composite terrane, althoughwe still
utilize the original names wherever reasonable to do so, such as
with local basement-cover relations.

Mojave Desert sector
The thrust belt in Sonora can be traced northward to about

the United States border where it is transected by a segment of
the younger, and somewhat sinuous, Laramide orogen, which
trends nearly east–west across southern Arizona and California
(Hildebrand 2015). To the north, the 80–70Ma post-deformational
intrusions of the Laramide are progressively less common (Fig. 9)
and the 100–85 Ma post-deformational plutons reappear to the

Fig. 8. Similarities along strike within the Peninsular Ranges orogen, from Mexico to Alaska, of major sedimentological,
magmatotectonic, and tectonic packages arranged from west to east, along with their age constraints, where known. Note the coeval
nature of most units along strike. The absence of a foreland basin north of the Lewis and Clark line in Idaho/Montana is attributed to
uplift and erosion during the younger Laramide orogeny.
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north of the Laramide McCoy Mountains Formation, and to the
west within California in the Big Maria Mountains, where a 86 Ma
granodiorite was folded during the Laramide orogeny (Hamilton
1964; Stone 2006). Just to the north in the Turtle and Riverside
mountains, several intrusions are in the 100–85 Ma range (Allen
et al. 1995). One granodioritic pluton, in the Granite Mountains,
just north of Palen Pass, is undated, but cuts Jurassic rocks and gen-
erally contains amylonitic foliationwith amineral lineation (Stone
and Kelly 1989) so is likely another member of the 100–84 Ma suite.
Near the northern end of the Piute Range, the 856 7 Ma East Piute
body is weakly to strongly peraluminous, undeformed tomylonitic,
and predates the Laramide deformation (Fletcher and Karlstrom
1990; Miller et al. 1990).

Some researchers recognized the lithological similarities of
the 100–84 Ma Mojave plutons (for example, Allen et al. 1995)
with those of the Sierra Nevada and Peninsular Ranges batholiths
and wondered why they were so far out of line with those belts.
Faults or tears in the subducting plate might be responsible for
apparent jumps across strike.
Themid-Cretaceous thrust belt of the US Cordillera, commonly

referred to as the Sevier fold-thrust belt (Armstrong 1968), reap-
pears in the New York Mountains of California (Burchfiel and
Davis 1977), where highly strained metavolcanic rocks range in
age from 98.4 to 97.6 Ma, whereas associated metasedimentary
rocks of Sagamore Canyon (Fig. 9) have MDAs of 98 Ma (Wells
2016). Thrust faults cut the volcanic rocks and are cut by 90.46

Fig. 9. Map modified from Wells (2016) and Hildebrand and Whalen (2017) on a geological base provided by Sue Beard (US Geological
Survey) showing the location of sites near Las Vegas, Nevada, with evidence for 100 Ma thrusting as red stars, and location of 100–85 Ma
plutons described in text as blue stars. WCT, Wilson Cliffs thrust; RST, Red Springs thrust; WPT, Wheeler Pass thrust. [Colour online.]
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0.8 Ma Mid Hills monzogranite, which is one of several plutons of
the 98–90 Ma Teutonia batholith (Beckerman et al., 1982; Miller
et al. 2007; Haxel andMiller 2007;Wells 2016).
In the Mezcal Range to the northwest, a sequence of 100.56

2 Ma basaltic lavas and epiclastic rocks overlain by plagioclase
porphyritic ignimbrites and lavas known as the Delfonte vol-
canics (Fig. 9), was detached, folded, and transported eastward on
thrust faults (Fleck et al. 1994; Walker et al. 1995) prior to the
emplacement of the Teutonia batholith. Other allochthons in the
area carry deformed plutons dated between 150 and 140 Ma
(Walker et al. 1995).
In the southern Spring Mountains just southwest of Las Vegas

(Page et al. 2005), nonmarine sedimentary and volcaniclastic
rocks of the Lavinia Wash sequence (Fig. 9), interpreted as syn-
orogenic deposits by Carr (1980), lie structurally below the con-
tact thrust plate. A rhyolitic boulder in conglomerate of the
Lavinia Wash sequence was dated at 98.0 Ma, and plagioclase
within an ignimbrite in the sequence yielded a 40Ar/39Ar age of
99.06 0.4 Ma (Fleck and Carr 1990). Two different ages of thrusts
are well mapped and described in the area of the Spring Moun-
tains, Nevada (Burchfiel et al. 1974, 1998; Axen 1987; Walker et al.
1995; Page et al. 2005), where the spectacularly exposed Keystone
thrust is a classic example of a younger and “out-of-sequence”
thrust (Longwell 1926; Davis 1973; Burchfiel et al. 1998).
A conglomerate unit within Brownstone Basin (Fig. 9), sits

structurally beneath the Red Spring thrust and contains cobbles
and pebbles apparently derived from the Wheeler Pass thrust
plate to the west (Axen 1987), as well as detrital zircons as young
as 103–102 Ma (Wells 2016). The Wheeler Pass thrust sheet itself
(Fig. 9), where exposed in the Spring Mountains, contains evi-
dence for exhumation during the Late Jurassic (Giallorenzo
2013), which perhaps reflects the Nevadan event; however, zircon
(U–Th)/He thermochronology from the thrust sheet, where exposed
in the Nopah Range to the southwest (Fig. 9), shows that exhuma-
tion started there at�100Ma (Giallorenzo 2013).
In both the Caborca region of Sonora and the SpringMountains –

Death Valley area west of Las Vegas, distinctive Neoproterozoic
and Cambrian sedimentary rocks, such as the Noonday Dolomite,
Johnnie Formation, and Stirling Quartzite, unknown from autoch-
thonous North America, were transported eastward in allochthons,
although theywere originally hypothesized to be offset by the enig-
matic Mojave–Sonora megashear (Stewart 2005). The Neoprotero-
zoic successions, as well as 150–140 Ma plutons, and the 100.5 Ma
Delfonte volcanics, were likely situated at or near the leading edge
of the arc terrane during basin closure. However, without Lower
Cretaceous cover on the eastern North American block, precisely
which thrust faultmarks the suture is not obvious.
Northeast of Las Vegas (Fig. 9), the upper Albian to Cenomanian

Willow Tank Formation and Baseline Conglomerate, interpreted
as synorogenic foreland deposits, rest unconformably on Middle
Jurassic Aztec sandstone in the Valley of Fire region, and were
dated as 98–96 Ma (Fleck 1970; Bohannon 1983; Bonde 2008; Pape
et al. 2011). More recent studies of detrital zircons from these and
other local formations— as well as zircons from plutons and vol-
canic rocks — bracket deformation from 102 to 96 Ma (Troyer
et al. 2006; Bonde et al. 2012; Wells 2016).
Farther north in east-central Nevada, eastward-vergent thrust

faults within the Garden Valley thrust system (Bartley and Gleason
1990), part of the Central Nevada fold and thrust system (Speed
et al. 1988; Long 2015), are cut by the �98 Ma Lincoln stock and the
�86 Ma Troy granite (Taylor et al. 2000). Basinal sedimentary rocks
of the westerly derived Newark Canyon Formation are exposed
within the Central Nevada fold and thrust belt in east-central Ne-
vada and were deposited from about 106 Ma until just after 99 Ma
(Di Fiori et al. 2020). The rocks could be a remnant of the through-
going pre-collisional seaway as they appear to be too old to be part
of the foredeep succession. The Nevada data are consistent with
folds and thrusts active at about 100 Ma in eastern Nevada, but the

northward continuation of the Sevier fold-thrust belt from the Las
Vegas area lies farther east in Utah and will be examined after
descriptions and discussion of the Sierra Nevada arc.

The Sierra Nevada
The geology of the Sierra Nevada is similar to the Peninsular

Ranges in that it has a 130–100 Ma volcano-plutonic arc complex,
built largely on Jurassic to Paleozoic basement, and situated
west of a 100–82 Ma suite of dominantly granodioritic–tonalitic
intrusions. One fundamental difference is located in the western
Sierran foothills where at least three different arc terranes (Sup-
plementary Fig. S22), younging westward and each accreted dur-
ing the Jurassic, serve to document westerly subduction, because
arcs are the upper plate in collisions (Brown et al. 2011; Hildebrand
2013). Each accretionary event was followed by an interval of post-
collisional plutonism that spanned several adjacent terranes (Sup-
plementary Fig. S22), which is typical for slab failure magmatism
(Hildebrand andWhalen 2017).
Early Cretaceous arc rocks are less abundant in the Sierra Ne-

vada than in the Peninsular Ranges batholith, butmany intrusive
rocks of that age exist and are widely distributed (Bateman 1992).
Perhaps the best-studied example of Early Cretaceous plutonic
rocks was by Clemons-Knott, who mapped a group of �120 Ma
ring complexes, known as the Stokes Mountain complex, and
produced geochemical analyses and isotopic data (Clemens-Knott
1992; Clemens-Knott and Saleeby 1999). Other examples of 130–
100 Ma rocks occur as roof pendants within the batholith.
Saleeby et al. (1990) described the geology of the Boyden Cave

and Oak Creek pendants (Fig. 10; Supplementary Fig. S32), both
located in Sequoia – Kings Canyon National Park. In the Boydon
Cave pendant, a variety of <110 Ma metavolcanic and metasedi-
mentary rocks — as well as Paleozoic and Jurassic metasedimen-
tary rocks — are intruded by a number of highly strained 103 Ma
hypabyssal intrusions and by post-deformational plutons at
about 100 Ma. The Oak Creek pendant, located to the west on the
Sierran Crest, comprises Jurassic metavolcanic rocks overlain
with angular unconformity by deformed and metamorphosed
<110 Ma basaltic to rhyolitic tuff, breccia, and lava, cut by hyp-
abyssal sills, and intruded by plutons dated at 106–105 Ma. Chen
and Moore (1982) obtained a slightly discordant U–Pb age on zircon
of 103–100Ma from an leucogranite body that cuts the sequence.
Memeti et al. (2010), in trying to define the location of the cryp-

tic Snow Lake shear zone of Lahren and Schweickert (1989), col-
lected and analyzed detrital zircons from several pendants, two
of which are applicable to our study. The first is at Cinko Lake,
located to the northeast of the Snow Lake pendant, where a
sequence of metavolcanic and metasedimentary rocks, folded
about northwest axes, have MDAs of 103 Ma; were intruded by a
101.86 0.2 Ma pluton, also metamorphosed and deformed; and
cut by the voluminous post-deformational 94–84 Ma Tuolumne
intrusive complex and the 96 Ma Kinney Lakes granodiorite of
the Sonoran Pass intrusive complex (Fig. 11). Just a few kilometres
to the southeast and along the eastern contact of the Tuolumne
complex, Cao et al. (2015) obtained an MDA of 117.4 6 2 Ma from
volcanogenic sandstones cut by a 97.46 0.4 Ma pluton. Deformed
metasedimentary rocks in both the Strawberry Mine and Cinko
Lakes pendants produced U–Pb zircon age peaks of 117, 116, 112,
108, 103, 99, and 96 Ma, consistent with local Aptian–Albion arc
sources (Memeti et al. 2010). We call the magmatic and related
sedimentary rocks the Cinko Lake arc trough after dated expo-
sures at Cinko Lake.
Farther south in the Mineral King pendant (Supplementary

Fig. S32), Sisson and Moore (2013) report U–Pb zircon ages for
metarhyolitic tuffs and andesitic lavas of 111–102 Ma, with older
metarhyolites and siliceous sills ranging back to 140 Ma. They
also reported that a 98 Ma granodiorite cuts vertical metasedi-
mentary rocks, which are also cut by isoclinally folded aplites,
one of which produced a U–Pb zircon age of about 98Ma.
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Near the southern end of the batholith, where it outcrops
along the Kern Canyon fault (Supplementary Fig. S32), the
Erskine Canyon sequence comprises 105–102 Ma siliceous ignim-
brites and subordinate intermediate lava flows, along with asso-
ciated hypabyssal rocks (Saleeby et al. 2008). These authors also
document several plutons with ages ranging from 105 to 103 Ma
cropping out to the west and a 98 Ma granodiorite to the east.
Even farther south, in the Tehachepi Mountains, Wood (1997)
mapped and dated by U–Pb zircon methods, several isoclinally
and recumbently folded gabbroic, dioritic, and tonalitic plutons
of the Tehachapi intrusive complex, which yielded ages of about
100 Ma, and sit close to the Oaks metavolcanics (Supplementary
Fig. S32) dated at 103 Ma (Chapman 2012). Thus, widespread pend-
ants within the main Sierran block consistently contain evidence
for the existence of Early Cretaceous volcanic and epiclastic rocks
that were deformed at about 100 Ma prior to emplacement of post-
deformational plutons as old as 98–96Ma.
In the northern Sierra (Supplementary Fig. S32), northwest of

Lake Tahoe, Lower to Upper Jurassic metavolcanic and metasedi-
mentary rocks of the Eastern Mesozoic belt (Christe and Hannah
1990) are unconformably overlain by a sequence of Barremenian
prehnite–pumpellyite grade metasedimentary and metavolcanic
rocks collectively known as the Evans Peak sequence (Christe
2011). Lower units in the sequence comprise chert-pebble con-
glomerate and quartzose sandstones, which are overlain by

coarse-grained plagioclase-rich sandstone, tuffaceous shales,
green siliceous tuff, volcanic cobbly conglomerate and �128 Ma
ignimbrites, overturned beneath the west-dipping Taylorsville
fault, which places Paleozoic rocks of the northern Sierra ter-
rane atop the early Cretaceous sequence (Moores and Day 1984;
Christe 2010, 2011). Although we only have a maximum age, it is
possible that the Taylorsville thrust is a 100 Ma structure and the
rocks of the Evans Peak sequencemight be the oldest known supra-
crustal rocks of the Early Cretaceous Cinco arc and trough in the
Sierra Nevada. Additional studies in the area arewarranted.
At the northernmost end of the White Mountains, west of

White Mountain peak, (Supplementary Fig. S32) is an overturned
section of metasedimentary and volcaniclastic rocks, containing
detrital zircons derived mostly from local 120–115 Ma volcanic
sources, that sit beneath a low angle fault carrying the Jurassic
Barcroft pluton (Scherer et al. 2008). If the entire section, includ-
ing the Jurassic rocks in the upper plate is overturned, then the
fault is likely to be a normal fault; otherwise, it is, as queried by
Scherer et al. (2008), a west-vergent thrust. Whatever its kinemat-
ics, this low-angle fault is transected by a body dated by U–Pb to
be 1006 1 Ma (Hanson et al. 1987).
Although the age of deformation is tightly constrained by

metasedimentary, metavolcanic, and plutonic rocks to be about
100 Ma, another line of evidence supports both age and subduction
polarity in the Sierran sector of the Peninsular Ranges orogen.
Chin et al. (2013) document granulite quartzite xenoliths (T =

700–800 °C and P = 7–10 kbar), brought to the surface in a Mio-
cene diatreme of the central Sierra Nevada, that contain zircons
with Proterozoic and Archean cores, but with rims that yield a
mean metamorphic age of 103 Ma. They interpreted the Protero-
zoic and Archean U–Pb crystallization ages found in the cores of
detrital zircon grains, and Hf isotopic ratios like those from Pro-
terozoic basement east of the Sierra Nevada, as the vestiges of
rocks deposited along the North American passive margin that
were transported deep beneath the arc where they were meta-
morphosed at about 100 Ma. As the North American platform is
unknown west of the Sierra Nevada, we infer that the rocks were
underthrust beneath the Cinko Lake arc from the east.
From the above, it appears that the age of deformation in rocks

of the Sierran batholith is coeval with rocks of the Peninsular
Ranges batholith (Memeti et al. 2010; Chin et al. 2013), as well as
easterly vergent thrust faults located in eastern California and in
the Spring Mountains of Nevada discussed earlier. By analogy, we
suggest that within the Sierra Nevada, subduction of the leading
edge of North America beneath the Cinco Lake arc during closure
of the basin led to break-off of the North American oceanic litho-
sphere, and its descent, along with perhaps part of the rift com-
plex, into the mantle. Thus, even though the Cretaceous passive
margin succession on the eastern side of the basin is not exposed,
the overwhelming geological and temporal similarities lead us to
conclude that the Cretaceous Sierra Nevada and broader Great
Basin are part of the Peninsular Ranges orogen. We now briefly
describe and examine the post-deformational magmatic suite
within the Sierra Nevada to demonstrate that rocks of the suite
are compositionally and temporally similar to the post-collisional
La Posta plutonic suite, located farther south. We then utilize the
geochemical and isotopic variations, as well as the timing from
both suites, to constrain the origin of post-collisional magmatism
by slab break-off.

The post-collisional Sierran Crest magmatic suite
Largely outcropping east of the 130–100MaCinco arc assemblage,

dozens of post-deformational 99–84 Ma tonalitic–granodioritic plu-
tons (Supplementary Fig. S32) are known collectively as the Sierran
Crest magmatic suite (Coleman and Glazner 1998). Just as early
researchers recognized that there were two intrusive suites in the
Peninsular Ranges batholith, researchers in the Sierra Nevada

Fig. 10. Sketch map showing four post-collisional centered complexes
of the Sierra Nevada. These are only a few of the post-collisional
plutons. See Supplementary Fig. S32 for a more detailed view of the
southern sector of the batholith. Location of Fig. 11, Cinco Lake
pendant, as well as location of Boyden Cave and Oak Creek pendants,
are starred. Modified from Davis et al. (2012). [Colour online.]
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understood that the more mafic plutons within the Sierra Nevada
batholith occur west of more intermediate-composition bodies
(Lindgren 1915; Buddington 1927; Moore 1959; Moore et al. 1961).
Many researchers have since confirmed that the intrusions of the
Sierra Nevada are readily divisible into older western and younger
eastern sectors (Fig. 12) on the basis of geochemistry, magnetic sus-
ceptibility, age, and both radiometric and stable isotope ratios
(Chen and Tilton 1991; Bateman et al. 1991; Kistler 1990, 1993;
Saleeby et al. 2008; Lackey et al. 2008, 2012a, 2012b; Chapman
et al. 2012). But, like rocks of the Peninsular Ranges, the defor-
mation that occurred between the two magmatic suites went
largely unrecognized, or was considered to be related to the
emplacement of the plutons (Bateman 1992).
The post-collisional plutonic rocks within the Sierran Batholith

range in composition from gabbro to leucogranite, but the most
common rocks are tonalite, granodiorite, and granite (Bateman
and Wahrhaftig 1966; Bateman et al. 1963; Bateman 1992; Ross
1989). In general, the hundreds of mesozonal intrusions within the
post-100 Ma composite batholith have sharp contacts with one
other, or are separated by minor screens of older metamorphic
rock (Bateman 1992; Bartley et al. 2012).
Bateman (1992) distinguished several intrusive suites of coge-

netic, but not necessarily comagmatic, plutons that have distinc-
tive petrographic, compositional, and textural characteristics, as
well as spatial proximity. The best known are the <100 Ma com-
positionally zoned complexes of the Sierran Crest magmatic
suite (Coleman and Glazner 1998), such as the Tuolumne intru-
sive suite, the Mount Whitney Suite, the John Muir suite, and the
Sonora Pass intrusive suite (Fig. 10), all of which consist of seem-
ingly nested units that are progressively younger andmore leuco-
cratic inward (Calkins 1930; Leopold 2016; Bateman and Chappell
1979; Huber et al. 1989; Hirt 2007). Plutons of the Sierran Crest
magmatic suite, were emplaced along the eastern Sierran crest
between 98 and 84 Ma, and many are characterized by an outer,
older tonalite and granodiorite in sharp contact with an inner
younger hornblende porphyritic granodiorite, and cored by even
younger K-feldspar megacrystic granite and granodiorite (Bateman
1992; Coleman andGlazner 1998; Hirt 2007).
Besides a spatial centering, it is unclear whether or not individ-

ual plutons within any of the so-called “nested” complexes are
related, other than by source. Originally, Bateman and Chappell

(1979) argued that the compositional zoning within the Tuo-
lumne intrusive complex resulted from crystal fractionation of a
single voluminous influx of magma. However, subsequent iso-
topic work (Kistler et al. 1986) ruled out this possibility, and U–Pb
zircon age determinations demonstrated that the complex was
emplaced over 10 million years from 95 to 85 Ma (Coleman et al.
2004) thereby negating the two-component mixing scheme fav-
oured by Kistler et al. (1986). Instead, Coleman et al. (2004) argued
for incremental emplacement of stacked intrusive sheets.

Geochemistry and origin of the post-collisional plutons
Since the early days of plate tectonics, most researchers have

developed models for the North American Cordillera where the
older arc-related magmatism developed above an eastwardly dip-
ping subduction zone and that shallowing subduction forced arc
magmatism to prograde eastwardly into the western margin of
North America, where it interacted with, and assimilated, older

Fig. 11. Geological sketch map of the Snow Lake and western Cinco Lake pendant (Lahren et al. 1990; Wahrhaftig 2000; Memeti et al.
2010; Leopold 2016), showing ages of folded metavolcanic, metaplutonic, and metasedimentary rocks and their truncation by younger
post-collisional plutonic complexes, which constrain the age of deformation to be between 102 and 96 Ma. DV, Death Valley. [Colour online.]
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cratonic crust (Bateman and Clark 1974; Kistler and Peterman 1978;
Kistler 1990; Gastil et al. 1981; Saleeby et al. 1990; Walawender et al.
1990; Chen and Tilton 1991; Johnson et al. 1999; Todd et al. 2003;
Grove et al. 2003;Ortega-Rivera 2003;Ducea andBarton 2007; Paterson
et al. 2014; Schmidt et al. 2014; Cao et al. 2015; Ducea et al. 2015).
Our analysis challenges this paradigm and proposes that the

arc and post-collisional suites were derived from the mantle
directly, without extensive crustal interaction (Hildebrand and
Whalen 2017; Hildebrand et al. 2018). Furthermore, these data
unexpectedly suggested to us that post-collisional magmatism
was likely responsible for producing at least half of all continen-
tal crust and by doing so resolves the long-standing crustal com-
position paradox (Rudnick 1995).
On our discrimination diagrams, the Sierra plutons plot in the

same fields as those of the rocks from the Peninsular Ranges (Fig. 13,
Supplementary Fig. S42). Although arc and post-collisional bodies
are superficially similar in field characteristics, there are consistent
major andminor geochemical differences between the>100Ma arc
and<100Ma post-collisional suites (Hildebrand andWhalen 2014b).
For example, most rocks of the La Posta and Sierran Crest mag-
matic suites contain 60%–70% SiO2 whereas the arc suite displayed
a continuous range from basalt to rhyolite (Fig. 14). Relative to the
arc rocks, members of the La Posta – Sierran Crest suites were gen-
erally more enriched in incompatible elements, as well as Sr, Na,
and Nb, haveminor to negligible Eu anomalies, and are depleted in
Y and heavy rare earth elements as recognized over 30 years ago by
Gromet and Silver (1987). They proposed that, although thewestern
pre-100 Ma rocks are typical arc rocks, the eastern, post-100 Ma plu-
tons were derived from a plagioclase-free, garnet-bearing source—
most likely eclogite or metabasalt. They suggested that altered
basaltic magma ponded at the base of the crust and thickened
it, only to be remelted later to create the post-100 Ma suite;
although the process by which basalts might have been emplaced
at the base of the arc crust prior to arc magmatism in the east
remained unanswered. While certainly attractive, models that
involve melting of basalt accumulated at the base of the arc are
unsatisfactory because the post-100 Ma rocks are post-tectonic,
and at the time of that magmatism, the leading edge of the conti-
nental margin had already been subducted beneath the arc, effec-
tively isolating the arc from the mantle. And the switchover to
post-collisional magmatism happened far too rapidly for accu-
mulations of basalt to build up, as even the youngest arc rocks
are intercalated with marine sedimentary rocks in both the Pe-
ninsular Ranges (Allison 1974; Phillips 1993; Busby et al. 2006)
and Sierra Nevada (Nokleberg 1981; Saleeby et al. 2008; Memeti
et al. 2010).
Putirka (1999) modeled aggregate melts using polybaric partial

melting of mantle rocks transported from their source to the
base of the lithosphere and found that Sm/Yb ratios increases
with depth of melting in peridotite, eclogite, and garnet pyroxen-
ite, as well as with greater lithospheric thickness. On a La/Sm vs.
Sm/Yb diagram (Fig. 15), slab failure suites consistently have
higher Sm/Yb than arc suites, indicative of initial melting at
greater depths, which led us to test and utilize this diagram as
another discriminator between the two suites, with a Sm/Yb
boundary of 2.5.

Isotopic constraints
Lackey et al. (2008) showed that intrusions of the post-100 Ma

Sierran Crest magmatic suite had d18Ozircon within, and close to,
the range of mantle d18Ozircon values. For example, Tuolumne
plutons have d18Ozircon ratios of 6.0%–6.6%, Mount Whitney zir-
cons are 5.67%–5.90%, and other intrusive bodies emplaced at
96 Ma range as low as 4.21%. The sub-mantle values probably
represent melting of hydrothermally altered rocks that had pre-
viously interacted with low d18O meteoric water at high tempera-
ture (see Bindeman 2008). Overall, these data suggest that the

Fig. 13. Nb vs. Y discrimination diagram from Hildebrand and
Whalen (2017) for various Sierra Nevada and northwestern Nevada
plutonic suites: pre-collisional 120 Ma Sierran Stokes Mountain
complex arc rocks (Clemens-Knott 1992), 94–84 Ma postcollisional
Tuolumne intrusive suite (Memeti 2009), Sahwave intrusive suite
of northwestern Nevada (Van Buer and Miller 2010), and Onion
Valley hornblende gabbro (Sisson et al. 1996) plus northern
Nevada plutonic rocks (du Bray 2007). WPG, within-plate granite;
ORG, ocean-ridge granite. [Colour online.]
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magmas were dominantlymantle derived but with some contam-
ination by source rocks that had previously interacted with hot
meteoric water.
Plutonic rocks of the post-100 Ma La Posta suite in the Peninsu-

lar Ranges batholith have heavier whole rock d18O with values
between 8% and 11% (Taylor and Silver 1978). These values led
Lackey et al. (2008) to argue that relatively young, hydrother-
mally altered oceanic crust was the most plausible source of the
magmatism as hydrothermally altered, oceanic basalt has whole
rock d18O�10% (Eiler 2001; Bindeman et al. 2005).
Some of the most obvious differences between the arc and post-

collisional magmas are their different initial Nd and Sr isotopic
ratios in that the post-collisional rocks typically have negative eNdT
and 87Sr/86Sri> 0.706, whereas the arc rocks have positive eNdT and
less evolved 87Sr/86Sri (Fig. 16). As mentioned earlier, the more
evolved ratios are classically interpreted to represent assimilation
of continental crust as the subducted slab shallowed (Kistler and
Peterman 1978; DePaolo 1980, 1981; Bateman 1992; Ducea andBarton
2007; DeCelles et al. 2009), but additional data suggest another
plausible source.
Mid-Cretaceous mantle-derived �100 Ma pyroxenite xenoliths

carried to the surface by Cenozoic basaltic magmas in the Sierra
Nevada have dominantly mantle d18O values (Lackey et al. 2008;
Ducea and Saleeby 1998), but many also have negative eNd(0) and
87Sr/86Sri > 0.706 (Fig. 16). Both the plutons and the pyroxenite

xenoliths also have Nd and Sr isotopic values similar to much
younger basalts widely erupted in western North America (Fig. 16),
including those of the<17 Ma Snake River Plain (Hanan et al. 2008)
and the 44–7 ka Big Pine volcanic field, erupted along the eastern
Sierran fault scarps (Blondes et al. 2008; Ormerod et al. 1991). Three-
component isotopic mixing models, utilizing (1) the oceanic island
basalt–like Steens–Imnaha lava, erupted west of the inferred conti-
nental edge, to represent the asthenospheric (Yellowstone plume)
component, (2) old lithosphere like that of the Wyoming craton,
and (3) younger Paleoproterozoic-like lithosphere, show that >97%
of the variability can be accounted for by progressive incorporation
of older subcontinental mantle lithosphere (SCLM) eastward along
the Yellowstone hot spot track (Jean et al. 2014). Thus, we infer
that the Sr and Nd isotopic ratios of the post-100 Ma plutonic rocks
of the SierraNevada andPeninsular Ranges batholithswere derived
from fractionalmelting of old, enriched SCLM.
Other post-collisional suites, such as the 100–85 Ma plutons

within the Coast Range batholith of British Columbia have posi-
tive eNdT and Sri < 0.704 (Girardi et al. 2012; Wetmore and Ducea
2011) similar to Steens basalt (Camp andHanan 2008), but contain
typical slab failure trace element signatures (Hildebrand and
Whalen 2017), so apparently do not have old, enriched SCLM
beneath them.
The contrasting isotopic signatures of arc and post-collisional

magmatism can be explained by a scenario in which the arc mag-
mas rose through juvenile arc lithosphere, and so exhibit non-
radiogenic values. However, after collision subcontinental mantle

Fig. 15. Rocks from both pre- and post-100 Ma suites from the
Peninsular Ranges batholith plotted in La/Sm vs. Sm/Yb space. Sm/
Yb ratios are one measure of partial melting depth in the mantle
(Putirka 1999). Rocks older than 100 Ma have Sm/Yb values <2.5,
whereas younger rocks have Sm/Yb >2.5. The differences
presumably reflect depth of melting of the original source
magmas and thus whether garnet was stable in the source.
According to Putirka (personal communication, 2016), partial
melts of spinel peridotite should produce more melt due to larger
degrees of partial melting than the deeper garnet peridotites,
most partial melts of spinel peridotite will have Sm/Yb less than
�2.5. Based on values from hundreds of younger arc rocks from
the GEOROC database, Hildebrand and Whalen (2017) found
Sm/Yb = 2.5 to be an effective dividing line between arc and
post-collisional rocks. [Colour online.]
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Fig. 16. eNdT vs. 87/86Sri plot of various arc and slab failure
plutonic and volcanic suites of the Peninsular Ranges and Sierra
Nevada compared with some Cenozoic basalts of western North
America (modified from Hildebrand and Whalen 2017), illustrating
the isotopic differences between arc suites and slab failure suites
and the isotopic similarities of the Peninsular Ranges and Sierran
post-collisional slab failure suites with basalts from the Snake
River Plain (Jean et al. 2014; Hanan et al. 2008) and Big Pine
volcanic field (Blondes et al. 2008). Fields for two Cascade arc
volcanoes (CL, Crater Lake and Lassen) from Bacon et al. (1994),
Sierran mantle xenoliths from Ducea and Saleeby (1998). CHUR,
chondritic uniform reservoir. [Colour online.]
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typically belongs to the lower plate, which, if cratonic, isolates the
arc from its formerly subjacentmantle. Thus, magmas triggered by
slab failure may have very different (more radiogenic) isotopic
ratios because enrichedmantle lithosphere was pulled beneath the
arc just prior to slab failure. Likewise, where both upper and lower
plates are young, they both should exhibit non-radiogenic isotope
ratios (Hildebrand et al. 2018).
Geochemistry and isotopic analyses suggest that pre- and post-

collisional magmas were derived from two different sources at dif-
ferent depths as previously envisioned for the Peninsular Ranges
by Gromet and Silver (1987). They also noted, as have Girardi et al.
(2012) in the Coastal batholith of British Columbia, that the post-
collisional rocks have minor to negligible Eu anomalies, which is
the general case for post-collisional slab-failure-derived magmas
(Hildebrand andWhalen 2014b, 2017). The lack of a Eu anomaly sug-
gests the absence of residual plagioclase in the source.
Hildebrand and Whalen (2017) showed that most slab window

adakitic rocks have trace element concentrations and ratios simi-
lar to slab failure rocks with mantle-like Sr and Nd isotopic con-
centrations, except for those of western North America, which
have isotopic compositions typical of the Snake River Plain, Sier-
ran Crest magmatic suite, and the Big Pine volcanic field. These
results support a slab failure model that involves melting of the
oceanic slab at depths sufficient for partial melting of garnetifer-
ous, plagioclase-free rocks to produce the observed trace element
profiles in both adakites and slab failure rocks, as well as the
unradiogenic Sr and radiogenic Nd ratios in regions without old,
enriched SCLM.
In regions where there was enriched SCLM, we found that Nd

and Sr isotopes were more evolved so we suggested that the ris-
ing magmas fractionally melted the SCLM to produce the more
evolved isotopic signatures, as well as the general lack of correla-
tion between silica and incompatible elements (see Supplemen-
tary Fig. S52; Hildebrand and Whalen 2017; Hildebrand et al.
2018).

Great Valley Group
Although the Sierra Nevada is characterized by voluminous 130–

100 Ma arcmagmatism, no temporally equivalent arc debris occurs
in the adjacent Great Valley Group located on the western side of
the arc terrane, and in fact, there are no Early Cretaceous sedimen-
tary rocks known even in drill core from the eastern Central Valley
of California (Ojakangas 1968; Reid 1988; DeGraaff-Surpless et al.
2002; Orme and Graham 2018). Additionally, rocks of the Great
Valley Group and their basement along the western margin of
the Central Valley (Constenius et al. 2000) show no evidence of
deformation related to the Nevadan orogeny (Wright and Wyld
2007), or the 100 Ma deformational event of the Sierra Nevada
(Hildebrand 2013). These observations are consistent with the
model of Wright and Wyld (2007) in which the western Great
Valle Group, Coast Ranges ophiolite, and the Early Cretaceous
part of the Franciscan complex migrated into the area at about
100Ma.
Exhumation of the hinterland in the Sierra Nevada region and

emplacement of plutons of the Sierran Crest magmatic suite
appear to have been contemporaneous with deposition of thick
Cenomanian–Turonian clastic successions to the west (Mansfield
1979; Surpless et al. 2006) just as in the Peninsular Ranges. This
same contrasting feature occurs at a few localities to the north,
such as the Coast Ranges batholith of British Columbia and
Wrangellia in south-central Alaska (Hildebrand andWhalen 2021
(this issue)). Examination of the 12-4 Ma Central Range orogeny
of Papua, New Guinea (Cloos et al. 2005), shows that about 25 km
of denudation occurred on the northern slope of the highest
mountains and plateaux (Fig. 17), which rise to nearly 5 km eleva-
tion and contain many post-collisional intrusions rich in Cu and

Au (Doucette 2000; McMahon 2000, 2001; Cloos and Housh 2008).
Sediment transport was into the back-arc region.

The suture zone preserved?
The southernmost part of the Sierran batholith in the Teha-

chapi and San Emigdio mountains, which abut the San Andreas
and Garlock faults to the south (Supplementary Fig. S32), is domi-
nated by amphibolite- and granulite-grade metamorphic rocks
with paleopressures as high as 10–11 kbar (Pickett and Saleeby 1993;
Chapman et al. 2012). Structurally beneath the high-grade rocks
(Fig. 18), which have ages ranging from 136 to 101 Ma, and separated
from them by the Rand fault, is the San Emigdio schist (Chapman
and Saleeby 2012), which contains detrital zircons ranging mostly
from 120 to 100 Ma (Jacobson et al. 2011). The few zircons younger
than 100 Ma appear to be metamorphic (A. Chapman and C. Jacob-
son, personal communication, 2020), which indicates that, at an
age of 100 Ma, the San Emigdio schist is older than, and unrelated
to, the Pelona–Orocopia–Swakane schists elsewhere. Precambrian
detrital zircons are plentiful within the schist, comprising�25% of
the zircons in one sample (Fig. 18), which suggests that these rocks
were depositedwithin the seaway anddonot representmaterial de-
posited on the open seafloor to the west, where there was no likely
source for Precambrian zircons.
According to Chapman et al. (2011), the San Emigdio schist

comprises over 75% interbedded metapsammite and metasand-
stone with much lesser amounts of metabasalt and talc–actinolite
schist. They documented peakmetamorphic assemblages as garnet +
plagioclase + biotite + quartz 6 muscovite 6 kyanite with limited
melt pods near the top. Paleopressures range from 11 to 9 kbar and
paleotemperatures were inverted, ranging from 600 °C near the
exposed base to 700 °C at the top.
The Antimony Peak tonalite sits above the Rand thrust with

paleopressures of 10 kbar and magmatic epidote (Chapman et al.
2011). U–Pb analyses of zircons revealed 136–135 Ma cores sur-
rounded by 103–99 Ma rims (Chapman et al. (2012), which along
with the results of Chin et al. (2013) from granulite xenoliths,
described earlier, constrain peak metamorphism at about 101–
100 Ma.
The schist structurally overlies a terrane comprising 5–10 km

long slabs of marble, quartzite, and metasandstone, as well as a
variety of schists (Chapman and Saleeby 2012). Their geologic
map (Fig. 18) lists the large 92–88 Ma Lebec Granodiorite as hav-
ing paleopressures of 3 kbar, which implies a high rate of exhu-
mation, one similar to that seen elsewhere along the orogen
(Hildebrand and Whalen 2021, this issue). Chapman et al. (2011)
argued that deposition, deep subduction, and exhumation to
mid-crustal depths took <3 million years, whereas Chapman
et al. (2012) suggested exhumation of rocks from 9–11 kbar at
98 Ma to mid-crustal levels by about 95 Ma. These exhumation
rates are typical of slab break-off at the end of collision when the
cratonic lower plate is freed of its oceanic anchor and rises rap-
idly to exhume the collision zone (Hildebrand andWhalen 2017).
Considering the above, we suggest that the San Emigdio Moun-

tains exposes an oblique north–south section through the 100 Ma
suture consisting of (1) lower plate North American Paleozoic
basement slabs, some as long as 10 km, of quartzite, metasand-
stone, schist, and marble, upward through (2) the San Emigdio
schists, likely remnants of material eroded from the arc and de-
posited within the seaway, and finally up into (3) the lowermost
part of the upper-plate arc, which expose abundant Early Creta-
ceous plutons and gneisses, with some as young as 101 Ma, at
�11 kbar paleopressures. By at least 92 Ma, rocks of the suture
were exhumed to 3 kbar.
In either our collisional model or in the eastward subduction

and underplate model presented by Chapman et al. (2012), the
�10 kbar paleopressures for the schist correspond to the base
of the Sierran crust at 100 Ma. Thus, at that time the crust
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beneath the Sierra Nevadan arc was about equal to, or slightly
less than, the average thickness of continental crust (Hacker
et al. 2015). This negates models that require a thickened arc crust
to remove fractionated cumulates formed during arcmagmatism
(Ducea and Saleeby 1998; DeCelles et al. 2009) and supports the
Hildebrand et al. (2018) model that most continental and oceanic
arcs are built on normal to thinned crust.
The San Emigdio collisional suture and surrounding rocks were

rotated clockwise from a more northerly orientation after 80 Ma
(Kanter and McWilliams 1982) and the entire southerly Sierran Ne-
vada batholith and basal suture were uplifted during the east–west-
trending Late Cretaceous Laramide orogeny (Wood and Saleeby
1998; Chapman et al. 2012), which we have argued was also colli-
sional (Hildebrand and Whalen 2017; Hildebrand 2015). When dis-
placements on the faults of southern California are restored (Powell
1993; Nourse 2002), the similar Pelona–Orocopia schists form an
east–west band extending across much of southern California and
western Arizona, and so they might in some cases represent suture
zone rocks rather than the product of east-directed flat subduction
as commonly hypothesized (Grove et al. 2003; DeCelles et al. 2009;
Jacobson et al. 2011; Chapman et al. 2011, 2012).

Sevier fold-thrust belt
If the complex zone described above represents the basal

suture of the Sierran arc system, then where to the east does it
surface? In other words, where is the easternmost exposure of
the contact zone?

Although there are many thrust faults known in the Great Ba-
sin region east of the Sierras, temporal data suggest that the zone
could lie well to the east in eastern California, the Spring Moun-
tains just west of Las Vegas, and northward into Utah and Idaho,
where the thrusts are collectively known as the Sevier fold-thrust
belt (Armstrong 1968). Hildebrand (2014) pointed out that the old-
est thrusts of the Sevier belt were synchronous with the first
deformational thickening to affect the North American platform
terrace.
In southeastern California and southern Nevada, and as described

in the Mojave Desert section of the paper, a sequence of 100.56 2 Ma
basaltic lavas and epiclastic rocks overlain by plagioclase porphyritic
ignimbrites and lavas known as the Delfonte volcanics (Fig. 9), was
detached, folded, and transported eastward on thrust faults (Fleck
et al. 1994; Walker et al. 1995) prior to the emplacement of the
98–90 Ma Teutonia batholith. Other allochthons in the area carry
deformed plutons dated between 150 and 140Ma (Walker et al. 1995).
The earliest of the Utah thrusts, the Canyon Range thrust, was

emplaced at about 125 Ma (DeCelles 2004; DeCelles and Coogan
2006) and the resultant synorogenic foredeep was filled during
the Aptian–Albian mainly by the Cedar Mountain and San Pitch
formations (Lawton et al. 2010) and so predates the 100 Ma colli-
sion. The thrust was unconformably overlain and sealed by upper
Albian? – Cenomanian conglomerate (DeCelles and Coogan 2006;
Lawton et al. 2007).
The next youngest thrust system of south-central Utah, known

as the Pavant–Nebo thrust system, transported Neoproterozoic

Fig. 17. Modern topography and differences in depth of denudation in the Central Range orogen of Papua, New Guinea, modified from
Cloos et al. (2005), and illustrating �25 km exhumation on the opposite side of the orogen from the foreland. Large rivers have
transported most debris northward to the North Coast basin because the nearly 5 km high Central Range blocks drainage to the south.
We see this as a more modern example of the post-collisional sedimentation in the back-arc region, such as the <100 Ma Valle and Great
Valley rocks, caused by slab break-off and consequent exhumation of the hinterland belt. [Colour online.]
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Fig. 18. Simplified geological map of the San Emigdio Mountains (modified from Chapman and Saleeby 2012), where we infer 11–9 kbar
San Emigdio schist to represent deformed metasedimentary rocks of the Lower Cretaceous Cinco Lake arc trough caught between the pre-
100 Ma high-grade base of the Cinco Lake arc and lower plate North America comprising megaslabs of Paleozoic metasedimentary rocks.
Cenozoic faults, mainly related to compression adjacent to the San Andreas fault, are not shown as they appear to have little separation
(Chapman and Saleeby 2012) and only limited effect on the regional tectonostratigraphy. Schematic section in upper left (a) illustrates the
inferred geological relations. (b) Detrital zircon profiles illustrating the similarities of zircons in the Salt Creek pendant compared with a
composite of sandstones in the Death Valley region to the east from Chapman et al (2012). (c) Subfigure in lower right shows cumulative
distribution of detrital zircons from two samples of the San Emigdio schist replotted from Jacobson et al. (2011) and interpreted to
represent metasedimentary fill of the Cinko Lake arc trough. Note the presence of sparse Precambrian zircons, which were probably
derived from North America as opposed to open seafloor to the west of the arc. These relations all support our model for westward
subduction of the leading edge of the North American craton and its Lower Cretaceous sedimentary cover beneath the 140–100 Ma Cinko
arc. [Colour online.]
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metasedimentary rocks, Paleoproterozoic crystalline basement
of the Santequin complex (Nelson et al. 2002), and a Phanerozoic
sedimentary succession, eastward, and led to the development of
a large overturned, nearly recumbent anticline. The Pavant sec-
tor of the system deformed and elevated the Canyon Range
thrust into an antiformal culmination during its emplacement
(DeCelles and Coogan 2006). Zircon (U/Th)/He ages from the
Pavant–Nebo thrust sheets document emplacement and exhuma-
tion of the thrust sheets between 102 and 96 Ma (Pujols et al.
2020). Using detrital zircon He, they also found that active thrust
belt deformation was concurrent with sediment dispersal east-
ward into the Cenomanian Dakota Formation, the temporally
equivalent foredeep stratigraphic unit. Thus, the Pavant–Nebo
thrust system was active at about 100 Ma. To the south in south-
western Utah, the Iron Springs thrust was recently dated to be
about 100 Ma on the basis of 100.18 6 0.04 Ma zircons extracted
from a dacitic tuff intercalated with coarse syn- to post-orogenic
debris of the Iron Springs Formation (Quick et al. 2020).
In northern Utah, major thrust activity and cooling of the

�125 Ma Willard thrust also occurred at 105–95 Ma, which led to
increased subsidence to the east and deposition of the 100–96 Ma
Aspen and Frontier formations in the foreland basin (Yonkee
et al. 2019; Pujols et al. 2020). A thrust duplex of Paleoproterozoic
crystalline rocks known as the Farmington complex seemingly
sits on Archean basement of the Wyoming – Grouse Creek block
(Mueller et al. 2011; Yonkee et al. 2003). The band of Paleoprotero-
zoic crystalline rocks likely continues northward into Idaho,
where Paleoproterozoic crystalline basement occurs within the
Cabin –Medicine Lake thrust system just east of the Idaho batho-
lith (Skipp 1987) and the Tendoy thrust of southwestern Montana
(Skipp and Hait 1977; DuBois 1982).

Hi-fluxmagmatic events
Our data suggest that the so-called hi-flux magmatic events of

arcs (Gehrels et al. 2009) are not arc-related, but instead occur
from slab failure during collision. Some researchers recognized
that flare-ups coincide with episodes of crustal thickening (Ducea
and Barton 2007; Ducea et al. 2015) but interpreted the thicken-
ing to reflect retro-arc thrusting (DeCelles et al. 2009). Other
researchers (Ducea and Saleeby 1998; Jagoutz and Behn 2013; Lee
and Anderson 2015) suggest crustal thickening in the arc by mag-
matic underplating, commonly accompanied by foundering of
dense cumulates, but these models fail because the arc is under-
plated by the lower plate lithosphere prior to the hi-flux event
so there is insufficient time for magmatic underplating. In our
model (Hildebrand and Whalen 2017), arc-continent collision
shuts down arc magmatism, and due to the buoyancy contrast
between the continental and oceanic lithosphere, the subducting
plate fails and the oceanic sector, possibly plus some thin litho-
sphere of the rifted margin, sinks into the mantle, where the
upper basaltic–gabbroic part of the oceanic slabmelts to produce
post-collisional magmatism. The change from arc magmatism to
slab failure magmatism happens rapidly, typically within a cou-
ple of million years, so there is no time, given the low thermal
diffusivity of rocks, for underthrust material to heat up and melt
sufficiently to produce the quantity of observedmagmatism.
The key difference between our model and those of others is

that we recognize the post-collisional nature of the hi-flux mag-
matism and relate it to melting of the subducting slab. We uti-
lized the timing and composition of the magmatism to resolve
the crustal composition paradox because we maintain that most
magmas are not arc derived (as commonly hypothesized), but
instead formed during the waning stages of collision and conse-
quent slab failure (Hildebrand et al. 2018). Because the batholiths
typically have silica contents >60% and are derived directly from
the mantle, we argue that they create large amounts of continen-
tal crust. In fact, on the basis of detrital zircon peaks that largely
coincide with periods of continental amalgamation (Condie et al.

2009, 2017; Hawkesworth et al. 2010, 2016), we suggest that post-
collisional magmatism might have created more than half of all
continental crust.

Conclusions

1. The Peninsular Ranges orogen is a �100 Ma orogenic belt
that extends from Mexico to Alaska, but here we discussed
only the Peninsular Ranges, Mojave, and Sierran sectors of
the orogen. The orogen formed when a marine trough, open
for about 40million years along the western margin of North
America, closed by westerly subduction, which pulled a pas-
sive continental margin, capped by a west-facing Albian car-
bonate platform built on the eastern North American side of
the trough, beneath an Early Cretaceous arc complex, built
on the western side of the trough (Fig. 19).

2. About a million years or so following the collision, the colli-
sional hinterland was exhumed and intruded by a swarm of

Fig. 19. Our tectonic plate scale model for the Peninsular Ranges
orogeny involves closure of a Lower Cretaceous seaway by west-
directed subduction and arc magmatism from �140 Ma until the
collision of the arc with North America at 100 Ma. The competing
buoyancies of the oceanic and cratonic lithosphere led to rapid
tearing and break-off of the subducted plate and an influx of
99–84 Ma post-collisional magmatism during exhumation of the
orogenic hinterland. During exhumation and plutonism, between
99–90 Ma molasse was shed westward into the old back-arc region.
[Colour online.]
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tonalite–granodiorite–granite plutons. The timing suggests
that the plutons and exhumation formed in tandem when
the oceanic lithosphere broke off from the partially sub-
ducted North American plate (Fig. 19).

3. The large mid-Cretaceous batholiths of the Peninsular Ranges
and Sierra Nevada are composed of two contrasting magmatic
suites derived from distinct mantle sources and emplaced at
different times. The older arc suite represents a generally
low-standing marine arc built on thinned lithosphere over a
westward-dipping subduction zone, whereas the younger
suite was post-collisional and invaded the orogenic hinter-
land during exhumation due to break-off and melting of the
subducting slab.

4. Models that utilize Andino-type or cyclic hi-magmatic flux
models for the development of Cordilleran batholiths, fail to
recognize that the transition from arc magmatism to post-
collisional hi-flux magmatism occurred rapidly, perhaps in
about a million years, so that there is insufficient time to
thicken the crust by underplating or for heat transfer by con-
duction to melt underthrust cratonic material.

5. The post-collisional magmas appear to have been derived
from melting of the basaltic–gabbroic upper part of the sub-
ducted oceanic lithosphere augmented by assimilation due
to fractional melting of the SCLM as they rose toward the
crust. Thus, slab break-off magmas have trace element con-
centrations and ratios similar to slab window rocks, but
where they rise through old and enriched cratonic litho-
sphere they acquire an enriched radiogenic signature.

6. There is no compelling evidence along the western edge of
the Peninsular Ranges and Sierra Nevada for a fore-arc basin
or accretionary prism during Early Cretaceous arc magma-
tism. Instead, voluminous quantities of material were shed
westward into the back-arc region after the 100 Ma collision
and termination of arc magmatism, when abundant detrital
zircons from the 100–90 Ma post-collisional plutons docu-
ment rapid exhumation of the orogenic hinterland.

7. An implication of our model is that retro-arc models for the
Sevier thrust-fold belt should be reconsidered, as there was
no eastward subduction beneath North America at about
120 Ma when the Sevier thrusting initiated. We claim there is
compelling evidence that the 130–100 Ma arc magmatism in
the Peninsular Ranges and Sierra Nevada were built above
westward, not eastward, subduction zones (Fig. 19).

8. In the San Emigdio mountains, the �100 Ma San Emigdio
schist, with an inverse temperature gradient and paleopres-
sures of 11–9 kbar, lies between a basal terrane comprising
slabs, up to 10 km long, of marble, quartzite, schist andmeta-
sandstone, and the base of the Sierran arc, consisting of
136–101 Ma plutons and gneisses originally at pressures of
10–11 kbar. We interpret these relations to represent an
oblique cross section through the uplifted 100 Ma collisional
suture zone, which was exhumed to mid crustal depths by
�95 Ma. Their paleopressures suggest Sierran crust of nor-
mal, or lesser, thickness.

9. The so-called “flare-up” events in Cordilleran arcs are the
result of collision followed by slab break-off magmatism.

10. In Part II, we explore the more northerly continuation of the
Peninsular Ranges orogen and demonstrate that overall it
extends from southern Mexico to Alaska, with geological
relations and timing in the northern sector similar to the Pe-
ninsular Ranges and Sierra Nevada.
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Supplemental Figure 1. Geological sketch map and section from Schmidt and Paterson (2002); 
Schmidt et al. (2014) showing the location and reverse faults along the western margin of the oro-
genic hinterland in Baja California. Numbers in boxes are paleopressures in Kbar. Note the jump in 
metamorphic grade across the Rosarito  and Main Martir thrusts.
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ARTICLE

Themid-Cretaceous Peninsular Ranges orogeny: a new slant on
Cordilleran tectonics? II: northern United States and Canada1

Robert S. Hildebrand and Joseph B. Whalen

Abstract: The mid-Cretaceous Peninsular Ranges orogeny occurred in the North American Cordillera and affected rocks
from Mexico to Alaska. It formed when a marine trough, open for �35 million years, closed by westerly subduction beneath
a 140–100 Ma arc complex. In Part I, we described the features of the orogen in Mexico and California, west to east: back-arc
trough, magmatic arc, 140–100 Ma seaway, post-collisional 99–84 Ma granodioritic–tonalitic plutons emplaced into the oro-
genic hinterland during exhumation, an east-vergent thrust belt, and farther east, a flexural foredeep. In western Nevada,
where the Luning–Fencemaker thrust might be a mid-Cretaceous feature, arc and post-collisional plutons occur in proximity. The
orogen continues through the Helena salient and Washington Cascades. In British Columbia, rocks of the 130–100 Ma Gambier
arc lie west of the exhumed orogenic hinterland and 99–84 Ma post-collisional plutons to collectively indicate westerly sub-
duction. East-dipping reverse faults near Harrison Lake, active from �100 Ma until �90 Ma, shed 99–84 Ma debris westward
into the Nanaimo back-arc region. Within Insular Alaska, the Early Cretaceous Gravina basinal arc assemblage was deformed
at 100 Ma and flanked to the east by a high-grade hinterland cut by post-collisional plutons. In mainland Alaska, the 100 Ma
collision of Wrangellia and the Yukon–Tanana–Farewell composite terrane occurred above a southward-dipping subduction
zone as shown by the 130–100 Ma Chisana arc sitting on Wrangellia and southward-dipping, northerly vergent thrusts in the
Lower Cretaceous Kahiltna basin to the north. The outboard back-arc region was filled with post-collisional detritus of the
McHugh complex.

Key words: orogeny, North American Cordillera, arc magmatism, arc-continent collision, slab failure magmatism, Peninsular
Ranges orogeny.

Résumé : L’orogenèse des chaînes péninsulaires d’âge crétacé moyen s’est produite dans la cordillère nord-américaine et a
touché des roches allant du sud du Mexique à l’Alaska. Elle s’est formée quand une fosse marine, ouverte pendant �35 millions
d’années, s’est refermée par subduction vers l’ouest sous un complexe d’arc de 140–100 Ma. Dans la première partie, nous
avons décrit les éléments de l’orogène au Mexique et en Californie qui comprennent, d’ouest et est, une fosse d’arrière-arc,
un arc magmatique, un bras de mer de 140–100 Ma, des plutons de granodiorite–tonalite post-collision de 99–84 Ma mis en
place dans l’arrière-pays orogénique durant l’exhumation, une ceinture de charriage vers l’est et, plus à l’est, une avant-fosse
formée par flexion. Dans l’ouest du Nevada, où le chevauchement de Luning–Fencemaker pourrait être un élément d’âge cré-
tacé moyen, des plutons d’arc et post-collision sont présents à proximité les uns des autres. L’orogène se poursuit par le sail-
lant d’Helena et les montagnes Cascades de l’�Etat de Washington. En Colombie-Britannique, des roches de l’arc de Gambier
de 130–100 Ma sont présentes à l’ouest de l’arrière-pays orogénique exhumé et de plutons post-collision de 99–84 Ma, indi-
quant collectivement une subduction vers l’ouest. Des failles inverses à pendage vers l’est près du lac Harrison, actives de
�100 Ma à �90 Ma, ont évacué vers l’ouest des débris de 99–84 Ma jusque dans la région de l’arrière-arc de Nanaimo. En
Alaska insulaire, l’assemblage d’arc et de bassin de Gravina d’âge crétacé précoce a été déformé à 100 Ma et flanqué à l’est
par un arrière-pays de haut degré de métamorphisme recoupé par des plutons post-collision. En Alaska continental, la colli-
sion à 100 Ma de la Wrangellie et du terrane composite de Yukon–Tanana–Farewell s’est produite au-dessus d’une zone de
subduction à pendage vers le sud, comme l’indique l’arc de Chisana de 130–100 Ma reposant sur la Wrangellie et des che-
vauchements vers le nord à pendage vers le sud dans le bassin crétacé inférieur de Kahiltna au nord. La région d’arrière-arc
externe a été remplie par des détritus post-collision du complexe de McHugh. [Traduit par la Rédaction]

Mots-clés : orogenèse, cordillère nord-américaine, magmatisme d’arc, collision arc-continent, magmatisme de rupture de
plaque, orogenèse des chaînes péninsulaires.

Introduction
Ever since the late 1960s, protracted easterly dipping sub-

duction beneath North America has been the standard model
to explain the development of the Cordillera (Dickinson 1970).

However, in a companion paper (Hildebrand and Whalen 2021,
this issue) we demonstrated how the geology of the Peninsular
Ranges and Sierra Nevada can be reconciled by a major orogenic
event, the Peninsular Ranges orogen, which developed at 100 Ma
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when an east-facing, 130–100 Ma shallow marine arc collided
with a west-facing Aptian–Albian passive margin of the North
American plate built on the east side of the Bisbee–Arperos seaway.
Following closure of the basin by westward-dipping subduction,
the oceanic lithosphere, along with much of the rifted margin,
broke off from the partially subducted North America plate and fell
away into the mantle. This slab failure led to rapid exhumation of
the collisional hinterland, which shed post-collisional, 99–84 Ma
plutonic and metamorphic debris westward into the back-arc
region. The debris was derived in part from a suite of 99–84 Ma
mesozonal–catazonal plutons formed when the basaltic–gabbroic
portion of the broken and sinking plate melted. Geochemistry
and isotopic analyses suggest that pre-collisional arc and post-
collisional slab break-off magmas were derived from two different
sources at different depths and can be distinguished on a set of dis-
crimination diagrams (for example, Hildebrand et al. 2018).
In Part I (Hildebrand and Whalen 2021, this issue), we showed

how 100 Ma easterly vergent thrust faults, interpreted to have
formed during the Peninsular Ranges orogeny, were traced north–
south through eastern California, Nevada, and Utah. In this paper,
we describe the northward continuation of the orogen starting in
westernNevada and continuing to south-central Alaska.

Nevada
Rocks and deformation of the Peninsular Ranges orogen are

exposed to the north of the Sierra Nevada through western Ne-
vada (Fig. 1), where both arc and slab failure plutons are common,
but the subcontinental lithospheric mantle (SCLM) might be
different from that beneath the Sierra Nevada (Hildebrand and
Whalen 2017). For example, the 93–89 Ma Sahwave intrusive suite
is a large post-collisional intrusive complex that is geochemically
and petrologically similar inmost respects to those in the Sierra Ne-
vada batholith farther south, such as the Tuolumne and Mount
Whitney intrusive suites (Supplementary Fig. S12), but has more
primitive eNdT and 87Sr/86Sri reflecting derivation from younger
and less-radiogenic lithosphere (Van Buer andMiller 2010).
In the Santa Rosa Range and Bloody Run Hills of north-central

Nevada, both located just west of the Luning–Fencemaker thrust
(Fig. 1), Brown et al. (2018) identified plutons of two age groups,
105–101 and 96–93 Ma, and noted that the older plutons had posi-
tive eNdT, ranging from 0.8 to 2.9 and 78Sr/86Sri from 0.7045 to
0.7049, whereas plutons of the younger group had eNdT from –1.5
to �3.2 and 78Sr/86Sri from 0.7052. to 0.7062. Even though the plu-
tons are close to one another, these data suggest derivation from
different sources, with pre-100 Ma intrusions reflecting an arc
source and the post-100 Ma plutons indicating assimilation of
SCLM. Thus, the lithospheres were juxtaposed at �100 Ma just as
they were to the south in the Sierra Nevada and Peninsular
Ranges. Supporting evidence for the interpretation that the
Santa Rosa – Bloody Run Hills now sit atop cratonic lithosphere
comes from the 248 6 1 Ma Koipato volcanics of the Humboldt
and adjacent ranges (Fig. 1), which lie to the south and southeast
of the Santa Rosa Range in the footwall of the Luning–
Fencemaker thrust, and have high initial Sr and negative eNdT,
which Vetz (2011) argued reflected interactions with Paleoproter-
ozoic lithosphere.
The age of the Luning–Fencemaker thrust is poorly constrained

because there are no known dikes or other intrusions that cut it
and, as it carries mostly Jurassic rocks in its hanging wall, has
commonly been assumed to be a Jurassic fault. However, as there
are also no known 130–100 Ma arc plutons to the east of the fault,
it is possible that the thrust is not Jurassic, but instead a 100 Ma
thrust active during the Peninsular Ranges orogeny. Most of the
samples collected for 40Ar/39Ar ages from Jurassic rocks in the
Santa Rosa Range, the Jungo Hills, and the Jackson Range (Fig. 1)

yielded plateau ages from 97 to 86 Ma, which are considered to
represent regional heating at about 100 Ma (Wyld et al. 2003).
Thus, on the basis of arc plutons located just to the west — but
not to the east — of the thrust, as well as the 40Ar/39Ar plateau
ages discussed above, we suggest that the Luning–Fencemaker
thrust is a 100 Ma structure, not a Jurassic fault as commonly
assumed (Wyld et al. 2003; DeCelles 2004).
Small areas of low-grade sedimentary rocks that fill at least one

half graben in the area, are collectively known as the King Lear
Formation (Fig. 1) and are dominated by conglomerate and sand-
stone, but contain an interbedded siliceous ignimbrite dated at
1256 1 Ma, as well as a hypabyssal intrusion at 1236 1 Ma (Martin
et al. 2010). We assume, based on the age, location, and presence
of volcanics, that these outcrops represent remnants of early
magmatism in the Cinco arc trough.

Idaho
Northward, across the Snake River Plain, several components

of the Peninsular Ranges orogen are exposed. Rocks in and adja-
cent to the Western Idaho shear zone, which lies along the west-
ern margin of the Atlanta lobe of the Idaho batholith, are
variably deformed, and in places contain deep-seated epidote-
bearing, tonalitic to granitic orthogneisses in the age range 1186
5 to 105 6 1.5 Ma, cut by epidote-bearing tonalitic sheets in the
age range 92 to 90 Ma (Taubeneck 1971; Hyndman 1983; Manduca
et al. 1993; Giorgis et al. 2008). The Western Idaho shear zone
(Supplementary Fig. S22) has long been considered as the western
margin of cratonic North America based largely on isotopic data
(Armstrong et al. 1977; Fleck and Criss 1985, 2007; Criss and Fleck
1987; Fleck 1990; Manduca et al. 1992).
East of the main shear zone, intrusions of the western border

zone of the Atlanta lobe of the Idaho batholith, as well as plutons
preserved as roof pendants, termed the Early Metaluminous
suite, occur within the younger Laramide sector of the batholith
and range in age from 98 to 87Ma (Gaschnig et al. 2010; Kiilsgaard
et al. 2001). In addition to the larger bodies, a number of small
intrusions in high-grade gneisses of the Sawtooth Range near
Stanley, Idaho (Supplementary Fig. S22), yield 95–92 Ma zircon
ages (Ma et al. 2017). On the basis of their age, the small bodies
appear to be post-collisional bodies of the Peninsular Ranges
orogeny, whereas the deformation appears to be related to the
Late Cretaceous Laramide orogeny as a post-deformational intrusion
was dated to be 77 Ma, about the same age as other post-Laramide
intrusions in the area (Hildebrand andWhalen 2017).
Transpressional deformation within the Western Idaho shear

zone is older than 90 Ma U–Pb ages of granitic pegmatites that
cut the fabric (Giorgis et al. 2008). However, according to Braudy
et al. (2017), the shear zone likely initiated after 104 Ma on the basis
of 99.5 6 1.4 Ma and 97.3 6 0.7 Ma Lu–Hf garnet isochrons, which
they interpret to represent the time of peak metamorphism. K/Ar
and 40Ar/39Ar ages in the area fall in the range 93–85 Ma and par-
tially overlapwith the emplacement of the 98–87Mametaluminous
plutons of the Idaho batholith (Lund and Snee 1988; Manduca et al.
1993; Snee et al. 1995; Giorgis et al. 2008), suggesting that the intru-
sions were emplaced during exhumation within the hinterland of
the Peninsular Ranges orogen. Whole-rock geochemical data of the
98–87 Ma plutonic rocks plotted on our discrimination diagrams
classify them as slab failure magmas (Supplementary Fig. S32). Just
west of the main mass of the Atlanta lobe (Supplementary Fig. S22),
98–88 Ma foliated epidote–hornblende tonalitic, quartz dioritic,
and granodioritic bodies, and gneisses, including the Payette River
tonalitic intrusion (91.5 6 1.1 to 89.7 6 1.2 Ma), are exposed (Lund
and Snee 1988; Manduca et al. 1993; Giorgis et al. 2008; Unruh et al.
2008) and, on the basis of the few existing analyses, appear to be
slab failuremagmas as well (Supplementary Fig. S32).

2Supplementary data are available with the article at https://doi.org/10.1139/cjes-2021-0006.

698 Can. J. Earth Sci. Vol. 58, 2021

Published by Canadian Science Publishing

C
an

. J
. E

ar
th

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
N

at
ur

al
 R

es
ou

rc
es

 C
an

ad
a 

on
 0

2/
11

/2
3

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://doi.org/10.1139/cjes-2021-0006


A variety of orthogneisses occur west of the Payette River tonalite
(Supplementary Fig. S22) as well as within the Western Idaho shear
zone and the youngest unit, an undeformed biotite–hornblende
granodiorite (Rat Creek granodiorite), yields U–Pb ages ranging
from 89 to 84 Ma (Braudy et al. 2017). West and north of the Payette
River tonalite, two deformed intrusive complexes, the Little Goose
Creek and the Hazard Creek, have seven U–Pb ages ranging
between 120 and 108 Ma, interpreted as emplacement ages, as well
as sparse Jurassic ages, which are compatible with local basement
(Patzke 2017). Unfortunately, no modern whole-rock geochemical
data have been published to date.

The Potters Pond migmatitic domain (Supplementary Fig. S22)
contains meta-arkose metamorphosed after 96.86 5.5 Ma as well
as orthogneisses dated at 98.66 0.6, 95.36 0.9, 93.36 0.7, and
92.46 0.7 Ma along with seven gneisses that yielded monazite
ages ranging from 98 to 91 Ma (Montz and Kruckenberg 2017). To
the southwest of the Snake River Plain, in the northern Owyhee
Mountains, several orthogneisses and plutons produced U–Pb zir-
con ages of 98–86 Ma, all with 87Sr/86Sri of 0.706 or higher (Benford
et al. 2010).
Taken together, the abundance of 100–85Ma intrusions emplaced

during and after deformation in the transpressional Western Idaho

Fig. 1. Geological map, with Cenozoic cover removed, of eastern California and Nevada showing the Sierra Nevada batholith, Cretaceous
plutonic rocks of Nevada, various tectonic terranes of Nevada after Crafford (2007, 2008) and northern Mojave Desert modified from
Walker et al. (2002). Death Valley and White–Inyo–Esmeralda sedimentary successions from Stewart (1970). BRH, Bloody Run Hills; HR,
Humboldt Range; RRP, 111 6 2 Ma metavolcanic rocks of the Rugged Rock Pendant from Whitmarsh (1997); SC, Schoonover sequence.
Jurassic 0.706 isopleth from Wyld and Wright (2019); location of 97–86 Ma 40Ar/39Ar plateau ages in Jurassic rocks west of Fencemaker
thrust from Wyld et al. (2003). Ages of plutons in Nevada mainly from N. Van Buer, personal communication, 2018; D. Johns and
C. Henry, personal communication, 2020; and Du Bray 2007. [Colour online.]
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shear zone suggests that these intrusions are post-collisional bodies
of the Peninsular Ranges orogen. Like the Sierra Nevada and Penin-
sular Ranges, intrusions younger than 100 Ma show the isotopic
interactionwith old and enriched continental lithosphere, whereas
pre-100Ma bodies located to the west are isotopically more juvenile
(Armstrong et al. 1977; Fleck and Criss 1985, 2007; Criss and Fleck
1987;Manduca et al. 1992).

Foreland basin remnant
East of the Atlanta lobe of the Idaho batholith and west of

the Boulder batholith in the Drummond, Montana area (Supple-
mentary Fig. S22), a succession of upper Albian to Santonian
sedimentary units over 3500 m thick, likely deposited in a flex-
ural foreland basin, were folded and thrust eastward prior to
emplacement of 82 Ma intrusions (Wallace 1987; Wallace et al.
1990). The Blackleaf Formation is the basal unit, comprising three
members, Flood, Taft, and Vaughn. Similar named units also
occur to the east in the Montana thrust belt near Wolf Creek, but
they are very much thinner, and 1–2 million years older, there
(Zartman et al. 1995; Singer et al. 2021). In the thick western sec-
tion, Wallace et al. (1990) pointed out that rocks of the Taft mem-
ber were uplifted and eroded at about 100 Ma, but that there is no
evidence of this in the thinner easterly sections. They (p. 1034)
also indicated that the >3000 m thick overlying “sequence of
rocks shares no similarities of lithologic succession with rocks of
the upper Cretaceous” in the thrust belt north of the Lewis and
Clark line and that the dominantly coarse-grained succession
was deposited in shallow, brackish water compared with the thin
sequence of marine Cenomanian–Santonian black shales depos-
ited farther east (see also Fuentes et al. 2011).
We infer that the erosion of the Taft member took place as the

easterly advancing thrust sheets caused the flexural bulge along
the eastern flank of the foreland basin to migrate in front of it.
The age of the unconformity, as well as the 3.5 km of Cenomanian–
Santonian clastic sediment above it, are consistent with the 100 Ma
Peninsular Ranges orogeny, not the older Sevier or younger Laramide
deformation.
Detrital zircons were collected from the Vaughn member of

the Blackleaf Formation and yielded a peak of 100 Ma (Stroup
et al. 2008) consistent with erosional debris expected from the Pe-
ninsular Ranges orogen. They also found detrital zircons in rocks
of the late Eocene Renova Formation with a distinctive 95 Ma
peak dominated by zircons younger than 100 Ma, whereas they
found that detrital zircons from the late Oligocene Medicine
Lake beds had a 105 Ma peak dominated by detrital zircons in the
age range 115–100 Ma. It appears that local drainages were able to
access both arc and orogenic hinterland rocks for many millions
of years after the collision.
The thrusts in the belt strike north–south and are easterly ver-

gent (Supplementary Fig. S42), whereas the younger Laramide
thrusts are oriented northwest–southeast and appear to reflect
the buttress effect of the Lewis and Clark lineament, located just
to the north (Hildebrand 2015). The thrusts and sedimentary suc-
cession are readily interpreted to represent a foreland fold-thrust
belt and related flexural foredeep of the Peninsular Ranges
orogeny.
Additional sedimentary debris, likely derived from post-collisional

plutonic rocks, was shed still farther inboard and is preserved in
the Bighorn basin (Supplementary Fig. S22) as rocks of the Mowry
Shale, Frontier Formation, and Cody Shale, which yielded youngest
detrital peak ages, consistent with their paleontological ages in
13 samples, ranging from99.4 to 87.7Ma (May et al. 2013).

Cascades
Although younger deformation and metamorphism related to

the Laramide orogeny obscure and obliterate some of the older
geological development of the Cascades (Miller et al. 2009 and

references therein), many components of the Peninsular Ranges
orogeny are preserved.
A number of Early Cretaceous metavolcanic and metasedimen-

tary units are exposed in the generally high-grade Cascades crys-
talline core (Fig. 2). These include the Cascade River schist, which
comprisesmica schist and biotite paragneiss with lesser amounts
of metaconglomerate, metavolcanic rocks, and metaperidotite
(Sauer et al. 2017). One sample of the schist yielded detrital zircon
populations of 120 Ma, a broad peak centered on 165 Ma, and a
maximum depositional age (MDA) of 97 Ma, whereas the other
sample produced a prominent peak of 93 Ma, as well as a small
peak of 165 Ma, and an MDA of 91 Ma (Sauer et al. 2017). They also
examined several samples from the garnet–sillimanite grade Ska-
git gneiss (Fig. 2) and found most detrital zircons have younger
Laramide-age rims, but that the cores are mainly Early Creta-
ceous, Jurassic, and Triassic. Five of the samples had core MDAs
of 121, 115, 112, 108, and 96 Ma, all 62 Ma. These ages appear to
reflect both arc and post-collisional magmatism related to the
Peninsular Ranges orogeny.
The high-grade crystalline core was intruded by three groups

of plutons with ages similar to other suites within the Cordillera
(Fig. 2): plutons attributed herein to the Peninsular Ranges oro-
gen are 96–89 Ma, Laramide bodies are 80–58 Ma, and plutons
emplaced during Laramide extensional collapse are 50–45 Ma.
The large 96–91 Ma Mount Stuart batholith (Matzel et al. 2006)
postdates the early deformational fabric and a thrust fault,
known as the Windy Pass thrust (Fig. 2), which placed rocks of
the dominantly ophiolitic Ingalls complex over metamorphosed
siliciclastic and metavolcanic rocks of the <125 Ma Chiwaukum
schist (Miller 1985). Brown and Gehrels (2007) reported a 95 Ma
dike that cut the amphibolite-grade Tonga Formation, which is a
fault-bounded fragment of the Chiwaukum schist located just
east of the Fraser River – Straight Creek fault zone (Fig. 2). We
plotted geochemical data from several intrusions (Supplemen-
tary Fig. S52), emplaced during regional amphibolite-facies meta-
morphism at depths of 25–35 km (Shea 2014; Miller et al. 2018)
and, as consistent with their post-deformational age of emplace-
ment, they appear to be post-collisional slab failure plutons.
West of the crystalline Cascades core, across the Straight Creek –

Fraser River fault and to the west in the San Juan Islands, is an
imbricate stack (Fig. 2) of units that were assembled after 110 Ma,
and largely before intrusion of the 96–90Ma plutons (Brandon et al.
1988; Brown and Dragovich 2003; Brown and Gehrels 2007) consist-
ent with the 100Ma orogenic event. Each thrust slice has a different
metamorphicmineral assemblage, but on thewholemost show evi-
dence for high-pressure, low-temperature metamorphism (Brown
et al. 1981). The lowermost unit of the stack is the Nooksack For-
mation, which comprises metavolcanic arc and associated meta-
sedimentary clastic rocks with 114 and 153 Ma detrital zircon
peaks and an MDA of 114 Ma (Brown and Gehrels 2007). These
authors reported that the Nooksack Formation is overlain struc-
turally, but separated by the Bell Pass mélange, from higher
thrust slices containing Jurassic, but no Cretaceous, rocks. The
mélange contains an incredible variety of clasts in a sandstone–
argillite matrix yielding amajor 119 Ma detrital zircon peak and a
possible MDA of 110 Ma, but two zircons with ages of 105 Ma sug-
gest the MDAmight be younger. Individual blocks in themélange
include the 4 km � 10 km slab of Twin Sisters dunite, along with
many smaller ultramafic blocks. In addition, blocks or lenses, up
to a few kilometres across, of metasedimentary rocks termed the
Yellow Aster complex, are dominated by detrital zircons mostly
older than 1800 Ma and were strongly metamorphosed and
intruded during the Devonian by gabbroic–tonalitic plutons (Brown
and Gehrels 2007; Schermer et al. 2018). Other blocks include Lower
Cretaceous blueschists, high-pressure, high-temperature Permian
amphibolite, Triassic ribbon chert, pillow basalt of oceanic island
provenance; and blocks of both underlying and overlying tectonic
units. Brown and Gehrels (2007) pointed out the similarity of the
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zircon age profiles in the blocks of Yellow Aster complex to many
rocks of western North America, such as the older nappes in the
Shoo Fly complex and the Antelope Mt. Quartzite of the Yreka ter-
rane in the Klamaths. However, Schermer et al. (2018) suggested they
are more similar to Yukon–Tanana and Alexander terranes. Because
the mélange contains a wide variety of blocks from varied settings,
including both continental and oceanic, as well as high-pressure,
low-temperature metamorphism, we suggest that the mélange is
part of the suture zone between the lowerNorthAmerican plate and
the Peninsular Ranges arc-bearing composite terrane.

Coast Mountains batholith of British Columbia
The geology of the Coast Mountains batholith of British Columbia

(Roddick and Hutchinson 1974; Roddick 1983) is similar in many
aspects to that of the Peninsular Ranges and Sierra Nevada. The
Coast Mountains batholith is traditionally interpreted as a mani-
festation of eastward subduction, initially beneath the Insular
terrane, but that magmatism migrated eastward beneath Stikinia
with time (Gehrels et al. 2009). The geology of the batholith is
extremely complex, because not only are rocks of the Peninsular
Ranges orogen present, but rocks deformed and intruded during the
Campanian–Paleocene Laramide orogen (Rusmore and Woodsworth
1991), as well as an Eocene deformational andmagmatic belt (Erdmer
and Mortensen 1993; Johnston and Canil 2007) largely occupy the

same north–south structural corridor (Hildebrand 2015; Hildebrand
andWhalen 2017).
On the mainland, the westernmost parts of the Coast Moun-

tains batholith (Fig. 3) comprise Triassic basement of Wrangellia
covered by dominantly greenschist-grade metasedimentary and
metavolcanic rocks of the Early to Middle Jurassic Bowen Island
and Harrison Lake groups, all cut by a variety of plutons (Friedman
et al. 1990; Mahoney et al. 1995). Rocks of the Bowen Island –Harrison
Lake groups are overlain, along a deeply incised unconformity, by
metavolcanic and metasedimentary rocks of the Gambier Group,
which is divided into two formations: (1) a basal assemblage, known
as the Peninsula Formation, dominantly composed of Berriasian–
Valanginian conglomerate, Buchia coquina, and arkose, overlain
by (2) rocks of the late Valanginian to Albian Brokenback Hill For-
mation (Fig. 3), which is a succession of submarine to subaerial
volcanic and volcaniclastic rocks ranging continuously in compo-
sition from basalt to rhyolite, as well as a variety of sandstone,
siltstone, black shale, and volcanic cobbly to bouldery conglom-
erate, containing clasts as large as 1–2 m across (Crickmay 1925;
Arthur et al. 1993; Lynch 1992, 1995). The Brokenback Hill forma-
tion contains Albian fauna, rhyolite dated at 112.06 0.3 Ma by U–
Pb on zircon (Lynch 1992, 1995) andMDAs, determined from detrital
zircon grains, of 116–114 Ma (Dorsey 2018). The Peninsular Forma-
tionwas shownbyDorsey (2018) to be younger than 138Ma.

Fig. 2. Geological sketch map of northwestern Washington, illustrating the basic geology of the San Juan Islands – Northwest Cascades
thrust system, the western Cascade crystalline core, and surrounding area. CB Chilliwack batholith; DF, Dirty Face pluton; GHB, Golden
Horn batholith; MSB, Mount Stuart batholith; N, Nooksack Formation; SB, Snoqualmie batholith; T, Tonga Formation; TP, Ten Peak
complex; WPT, Windy Pass thrust. Modified from Brown and Dragovich (2003) with ages of plutons from Miller et al. (2009) and ages of
other units from Brown and Gehrels (2007) and Sauer et al. (2017). [Colour online.]
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Farther north, Mahoney et al. (2009) described and grouped the
Lower Cretaceous plutons in the Bella Coola region into two
suites: the 141–131 Ma Firvale Suite, which consists of hornblende–
biotite granodiorite to granite, and the 123–110 Ma Desire suite, a
heterogeneous suite of pyroxene–hornblende- and biotite-bearing
diorites and granodiorites, commonly deformed by shear zones
characterized by a strong foliation and (or) locally developed mylo-
nitic fabrics.
Early work on the structure of the southern Coast plutonic

complex suggested that �100 Ma faults along the eastern bound-
ary of the Lower Cretaceous arc rocks in the Harrison Lake region
(Fig. 3), were low-angle thrust faults that placed high-grade meta-
morphic rocks westward over low-grade arc rocks (Journeay and
Friedman 1993), an interpretation that led to the general notion
that subduction beneath the belt was eastward. However, more
recent work suggests that the faults are much steeper and have
over 10 km of reverse displacement (Friedman et al. 1992; Brown
et al. 2000; Gibson and Monger 2014) and that the higher-grade
rocks were exhumed westward and placed atop the western plu-
tonic terrane (Fig. 4), which consists dominantly of pre-collisional
Lower Cretaceous arc plutons and greenschist-grade arc volcanic
and associated epiclastic rocks as discussed above.
These findings suggest that the arc was on the western block

prior to collision at 100 Ma, and that the upper plate was more
regionally extensive than previously thought. If so, then the
reverse faults are east side up and, therefore, the collisional

suture related to basinal closure, if preserved, should lie to the
east, not the west.
The rocks of the Harrison Lake region (Fig. 5) constrain the age

of deformation to be about 100 Ma as a 102 Ma metadacite, the
107–101 Ma Breakenridge intrusive sheets, and the 103 Ma Clear
Creek pluton are all deformed, whereas the post-deformational
Hornet Creek, Spuzzum, and Ascent Creek bodies are all 97–96 Ma
(Brown andWalker 1993; Gibson and Monger 2014). The collision in
this area represents the collision between the Peninsular Ranges
composite terrane, composed of parts of the Insular and Inter-
montane superterranes, which had previously collided during
the Jurassic (Monger et al. 1982), but were partly separated when
the Lower Cretaceous trough opened.
Friedman et al. (1990) showed that tight isoclinal folds along

the steeply dipping Butter Creek fault (Figs. 4 and 5), which
clearly postdate the 100 Ma isoclinal folding, transposition of
bedding, and thrust faults that imbricate the metavolcanic and
metasedimentary rocks, as well as Breakenridge gneiss, were cut
by the 91.5 6 2 Ma Mason pluton. This implies that the majority
of the exhumation within the hinterland belt took place in less
than 10million years.
Farther north, within the eastern part of the batholith, rocks of

Yukon–Tanana and Stikine terranes are exposed and are gener-
ally high-grade metasedimentary migmatites and orthogneiss,
typically at upper amphibolite to granulite grade with sillimanite
growth after kyanite or staurolite (Hutchison 1970; Stowell and
Crawford 2000; Hollister and Andronicos 2000; Rusmore et al.

Fig. 3. Geological sketch map of the southern portion of the Coast plutonic complex, British Columbia, modified from Friedman and
Armstrong (1995), with additional ages from Gibson and Monger (2014). Note that abundant 135–100 Ma plutons, as well as arc volcanic
and sedimentary rocks of the dominantly marine Gambier Group, sitting on Late Jurassic basement in pink, all lie west of the Harrison
Lake structural break, whereas �101–86 Ma post-collisional plutons, shown in brick red, span the entire area. [Colour online.]
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2000). Arc rocks, generally at relatively low metamorphic grade, lie
to the west of the high-grade hinterland belt (Gibson and Monger
2014) and indicate that the Yukon–Tanana composite terrane was
part of the lower plate in the collision and that subduction was
westward beneath the arc (Fig. 6).

The post-collisional Ecstall plutonic suite
Both the hinterland and arc terranes of the Coast plutonic com-

plex were intruded by a suite of post-collisional plutons in the
age range 99–85 Ma (Brown and McClelland 2000; Brown et al.
2000; Gehrels et al. 2009; Mahoney et al. 2009; Girardi et al. 2012),
just as typically occur farther south (Fig. 7). The intrusive suite
consists of large homogeneous bodies of tonalite with lesser
quantities of granodiorite and quartz diorite, commonly with
megascopically visible euhedra of titanite and epidote (Gehrels
et al. 2009). Where the bodies intruded the hinterland belt, they
were emplaced into high-grade rocks during their exhumation
(Crawford et al. 1987; Himmelberg et al. 2004). Mahoney et al.
(2009) dated one intrusion by U–Pb zircon to be 86.86 0.3 Ma and
included it in his Big Snow suite.
The western part of the Coast Plutonic complex continues

northward along the coast where some 50 km south of the USA–
Canada international border (Fig. 7), the 20 km by>80 km, epidote-
bearing, 986 4Mahornblende dioritic–granodioritic Ecstall pluton
intruded deformed and high-grade wall rocks at depths of 25–
30 km and has a 40Ar/39Ar hornblende age of 906 3Ma, which indi-
cates rapid uplift and exhumation (Woodsworth et al. 1983; Brownlee
and Renne 2010) consistent with the Harrison Lake region farther
south. Other U–Pb zircon data yield an age of 91 6 0.5 Ma for the
pluton (Butler et al. 2002). This age conflicts with 40Ar/39Ar horn-
blende ages; however, Brownlee and Renne (2010) showed that the
Ar systematics were severely disturbed by younger intrusions to
the east. The U–Pb ages determined by Butler et al (2002) also
young eastward, so additional study is warranted. Nevertheless,
the available data indicate that the pluton is no younger than 91Ma.
The plutonic wall rocks are kyanite-bearing, metamorphosed

at 30 km depth, and deformed into tight isoclines and by cleavage,
both of which are transected by a more steeply dipping foliation
containing steep lineations adjacent to east-dipping, westerly

vergent shear zones dated at about 90 Ma by 40Ar/39Ar (Crawford
et al. 1987). Crawford and Hollister (1982) pointed out that the
metamorphic grade increases structurally upward from west to
east, and varies from chlorite in the west to kyanite+muscovite+melt
(8.1 kbar) in the east, indicating westward transport of higher over
lower-grade metamorphic units. The structures responsible for this
transport appear to be the typical reverse faults found alongmuch of
thewestern Peninsular Ranges orogen and are similar in age to those
aroundHarrison Lake.
As the post-collisional suite was previously unnamed in the

Coast plutonic complex, we name the 100–84 Ma post-collisional
suite the Ecstall suite after the deep-seated Ecstall pluton. We
plotted available geochemistry from the post-collisional 100–
85 Ma intrusions on our discrimination diagrams and, consistent
with our model, they plot as slab failure plutons (Supplementary
Fig. S62) as do the contemporaneous plutons farther south.
Girardi et al. (2012), who studied the geochemistry of a sector

within the batholith, suggested that it is unlikely that the post
100 Ma plutons fractionated or interacted with other rocks in a
significant way above the stability limit for plagioclase in these
composition rocks, which, on the basis of experiments with am-
phibolite and eclogite, is about 100 km (Rapp et al. 1991). Overall,
the geochemical data from rocks studied by Girardi et al. (2012)
are similar to those of post-collisional plutons farther south, in
that compatible elements vary systematically with SiO2 but that
with incompatible elements there is no correlation. The same
patterns are found in the Tuolumne plutonic suite (Hildebrand
et al. 2018), and indicate that as magmas rose, theymodified their
composition by fractional melting and assimilation of the SCLM.
However, because the SCLM beneath the Coast batholith was rel-
atively juvenile and non-radiogenic, the Nd and Sr isotopes are
more juvenile, or arc-like, than plutons that interacted with old
and enriched SCLM. Coast Range plutons have d18O values rang-
ing from 7.2% to 10%, which indicates that the magmas were
derived from, or interacted with, rocks that had been weathered
near the surface (Wetmore and Ducea 2011). Those researchers
pointed out that the high d18Oquartz coupled with the primitive
Sr, Pb, and Nd indicate that the source of the magma must have
been mainly mafic, volumetrically large, had primitive radio-
genic isotopes, and were altered by low temperature meteoric or

Fig. 4. Cross section from west to east through the Harrison Lake fault belt illustrating the structural relief across faults. Modified from
Monger and Brown (2016). [Colour online.]
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sea water. Just as with the Sierra Nevada and Peninsular Ranges
batholiths, the upper basaltic–gabbroic part of oceanic crust is a
potential source of these magmas. When compared with post-
collisional plutons of the Sierra Nevada and Peninsular Ranges, Sr
and Nd isotopes are less evolved, but Sierran plutons commonly
have lower,mantle-like d18O values.

Nanaimo and Queen Charlotte groups, British Columbia
To the west of the orogen on eastern Vancouver Island, a Late

Cretaceous sedimentary succession, known as the Nanaimo Group,
sits unconformably upon rocks of Wrangellia (Monger et al. 1982;
Mustard 1994; Mustard et al. 1995). Much like their equivalents to
the south, this succession is typically considered to represent a fore-
arc deposit situated west of the arc represented by the Coast Ranges
batholith. However, the rocks of this succession have pronounced

detrital zircon peaks (Fig. 8) between 100 and 85 Ma (Matthews et al.
2017), ages that are too young to be arc related, but do match post-
collisional plutonic ages, so are interpreted here to represent debris
shed from the exhumed hinterland belt.
Other researchers have noted the far-sided paleopoles for the

Nanaimo Group and considered that it must have traveled from
the south (Enkin et al. 2001). However, the lack of exposure between
Vancouver Island and the mainland means there is no recognized
fault along which this northerly rotation might have taken place.
But, as discussed above, a troughwith similar 100–85Ma detrital zir-
cons occurs all along the western side of the Peninsular Ranges oro-
gen, obviating the requirement for Vancouver Island to havemoved
relative to the mainland and Coast batholith to provide the neces-
sary-age zircons. In addition, paleomagnetic results frommore inte-
rior locations, such as those obtained from rocks of the 95–85 Ma
Silverquick and Powell Creek formations (Enkin et al. 2006a) and

Fig. 5. Plutons of the Coast Range plutonic complex east of Harrison Lake bracket the time of deformation to be about 100 Ma. Modified
after Brown and McClelland (2000) and Brown et al. (2000). Ages from Gibson and Monger (2014). Rocks of the Slollicum schist are similar
lithologically to those of the Gambier Group west of the Harrison Lake fault, but are generally at higher grade. They were shown by
Dorsey (2018) to be the same age with maximum depositional ages of 120 and 112 Ma. Rocks of the Cogburn Group are a greenschist–
amphibolite mélange of oceanic rocks, whereas Settler schist is composed of amphibolite-grade pelitic–psammitic metasedimentary
rocks. Both are poorly dated. The Butter Creek fault (BCF) is cut by the 91.5 Mt Mason pluton; thus, the main exhumation of the
hinterland took place in less than about 10 million years. B, Breakenridge pluton; CC, Clear Creek pluton; HC, Hat Creek pluton; SC,
Settler Creek pluton. [Colour online.]
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Methow block (Granirer 1985), approximate those from rocks of the
Nanaimo basin (Enkin et al. 2001). Irving et al. (1995, 1996) suggested
a model involving northward migration along the cryptic Intra-
Quesnellia fault; whereas Hildebrand (2015) used piercing points to
show how 1300 km of northerly migration could be restored along
faults well inboard of those traditionally investigated for such dis-
placements, similar to models of Enkin et al. (2006b) and Gladwin
and Johnston (2006).
Haida Gwaii lies offshore from the region just south of the

international border (Fig. 7). There, Dorsey (2019) sampled sand-
stones and pebbly conglomerates from the Cretaceous Queen
Charlotte Group (Haggart 2004) for detrital zircons. His zircon
analyses document the progressive deroofing of the arc and post-
collisional hinterland belt (Fig. 7) of the Peninsular Ranges oro-
gen at this latitude.

Trapped units
Within the northern Cordillera, the lack of recognition of a

100 Ma collision has led to difficulties in interpreting the setting
of various terranes. Recognizing the rifting and spreading to
form the early Cretaceous seaway and its subsequent 100 Ma de-
misemight resolve some of these problems.
Several terranes are caught between North America and the Pe-

ninsular Ranges composite terrane. These terranes include relic
parts of the Insular and Intermontane superterranes, because as
discussed earlier, the two superterranes had initially collided
during the Jurassic, but were subsequently dismembered during
the Early Cretaceous. In this scenario, fragments of the previous
Intermontane terrane could have been rifted to constitute part of
the western block and, similarly, fragments of the Insular terrane
could have been transferred to the eastern side of the basin. Here
we briefly discuss two terranes: Spences Bridge terrane and
Methow basin, both of which span the international border.

Thorkelson (1986) suggested that at least one piece of the Early
Cretaceous arc, located just east of the Fraser River – Pasayten fault
system in southern British Columbia (Supplementary Fig. S72), and
termed the Spences Bridge Group, faced westward during magma-
tism. Overall, the Spences Bridge Group is a late Albian two-part
volcanic succession that rests unconformably on several rock units
of the Intermontane superterrane and was considered to have
formed by eastward subduction prior to, and after, amid-Cretaceous
collisionwith the Insular terrane (Thorkelson and Smith 1989).
Volcanic rocks of the group were divided into two successions:

a lower unit of calc- alkaline basaltic to rhyolitic arc-type volcanic
and intercalated sedimentary rocks containing late Albian fos-
sils, overlain by more localized andesitic lava flows of a broad
shield volcano interpreted to be post-collisional and cut by plu-
tons with K–Ar ages of 98–97 Ma (Thorkelson and Smith 1989).
They determined that the lower lavas have 87/86Sri ranging from
0.70316 to 0.7040 and eNdT from 5.0 to 7.8, whereas the upper
andesitic rocks are more primitive with 87/86Sri as low as 0.70298
and eNdT as high as 8.8. We plotted their trace element analyses
on our discrimination diagrams. Although some elements were
affected by alteration, least mobile elements (Ta/Yb and La/Sm vs.
Sm/Yb) support their model of arc magmatism overlain by younger
andesitic magmatism derived from a different, likely deeper, man-
tle source. We envision that the Albian arc suite represents part
of the arc built on a fragment of the Intermontane superterrane
within the Peninsular Ranges composite terranewest of the seaway
and that the upper suite represents early post-collisional magmas
derived from beneath the collision zone during slab break-off. In a
different approach to explain the location of the Spences Bridge
Group, Lynch (1995) developed an arc–arc collision model with
bothwesterly and easterly subduction.
The lack of recognition of at least one Jurassic collision fol-

lowed by a 100 Ma mid-Cretaceous collision led to a complex

Fig. 6. Cross sections through the Coast plutonic complex, modified from Gehrels et al. (2009) illustrating that the 120–100 Ma Lower
Cretaceous arc plutons lie west of the collapsed Gambier basin, shown in yellow, whereas post-collisional rocks in red span the contact of
the 100 Ma collision zone. These relations document that subduction was westward-dipping on the east side of the Insular superterrane
prior to collision with the Intermontane terrane at 100 Ma. During the Peninsular Ranges orogeny, the leading edge of the Intermontane
superterrane was pulled beneath the arc located on the Insular superterrane. Following slab failure, the area was riddled with post-
collisional plutons and the collision zone exhumed to expose high-grade metamorphic rocks of the lower plate. [Colour online.]
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model using large-magnitude sinistral strike-slip faults to relo-
cate the Methow basin, interpreted as a fore-arc basin, into a
retro-arc position by younger dextral strike-slip faults to explain
its present location on the east side of the Coast plutonic com-
plex between the Insular and Intermontane terranes (Monger
et al. 1994; Gehrels et al. 2009; Yokelson et al. 2015). The basin is a
fault-bounded block (Haugerud et al. 1996) lying to the west of
the Spences Bridge Group, and separated from it by the east-
vergent Pasayten thrust (Umhoefer and Miller 1996). Existing

data suggest that the Methow basin preserves a remnant of the
Early Cretaceous arc trough. Metasedimentary rocks dominate
the trough, are dominantly siliciclastic and immature with a
high modal plagioclase content, and were deposited from the
middle Albian to the Cenomanian atop upper Paleozoic to lower
Mesozoic cherts and greenstones of the Hozameen and Bridge
River groups (Kleinspehn 1985). Upper parts of the sedimentary
succession were intruded by a 97.5 Ma sill (Dragovich et al. 1997)
and by 96–88 Ma plutons (Haugerud et al. 1996). Detrital zircons
from both northern and southern outcrop belts (Surpless et al.
2014) yield two main age peaks: an Oxfordian peak and an Early
Cretaceous peak (Fig. 9). Similar profiles from several locations
typically exhibit a general magmatic lull between about 140 and
125Ma. Geochemical analyses of mudrocks from the block (Surpless
et al. 2014) plot in the arc field on our discrimination plots, con-
sistent with their presumed proximity to Lower Cretaceous arc
material as well as 160 Ma Jurassic arc rocks. The uppermost unit,
the Goat Wall Formation, comprises andesitic flows and siliceous
ignimbrites intercalated with volcanogenic sedimentary rocks
containing detrital zircons as young as 105 Ma (Surpless et al.
2014). Based on the ages and compositions of the Methow rocks,
the block is interpreted to be part of the Early Cretaceous arc
and seaway.
Zircons older than about 200 Ma (Fig. 9) are interpreted to have

been derived from rocks well to the south, near the Gondwana–

Fig. 7. Geological sketch map of part of the Coast plutonic
complex, illustrating the various terranes, the Gravina trough
assemblage and detrital zircon suites from Cretaceous
sedimentary rocks of the Queen Charlotte Group on Haida Gwaii
(Dorsey 2019) illustrating a progressive deroofing sequence
ranging from Jurassic basement upwards through 130–100 Ma arc
and 99–88 Ma post-collisional magmatism. See Supplementary
Fig. S82 for detailed map and detrital zircon results for Gravina
trough and related rocks. [Colour online.]

Fig. 8. Detrital zircon probability diagrams for rocks of the
Nanaimo Group, illustrating the similarity of dterital ages within
rocks of the Salinian block, Sierra Nevada, and Peninsular Ranges
(modified from Matthews et al. 2017). Note the consistent mid-
upper Jurassic peaks reflecting basement, as well as the obvious
130–100 Ma arc and 100–83 Ma post-collisional peaks. Salinia, as
well as rocks of the Sierra Nevada and Peninsular Ranges, were
relatively unscathed by younger Laramide deformation so their
outboard regions do not contain 75 6 5 Ma detrital zircons (see
fig. 8 in Hildebrand and Whalen 2021). [Colour online.]
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Laurussian collision zone as they contain a 278 Ma Permian peak,
Cambrian peaks of 540 and 512 Ma, a 700 Ma Gondwana peak,
and two Grenville age peaks of 1035 and 1190 Ma: there are no
Paleoproterozoic or Archean zircons (Surpless et al. 2014). If the
700 Ma detrital zircons were derived from Gondwana, then the
Methow block probably migrated northward while the basin
remained open.

Gravina trough
Late Jurassic to Early Cretaceous volcaniclastic and mafic to in-

termediate volcanic rocks known as the Gravina succession (Fig. 7
and Supplementary Fig. S82), generally interpreted to be remnants
of a magmatic arc, crop out in Insular Alaska and on the mainland
to the east (Berg et al. 1972; Rubin and Saleeby 1991; McClelland
et al. 1992; Ricketts 2019). In the west, rocks of the Gravina succes-
sion unconformably overlie rocks of the Insular terrane, whereas
to the east they sit structurally upon Permo-Triassic rocks of the
Taku terrane. On the basis of Nd–Sr isotopic and detrital zircon
characteristics, the Taku terrane is interpreted as part of Yukon–
Tanana terrane, implying that an older suturemust lie between the
Insular and Intermontane superterranes in that region (Kapp and
Gehrels 1998; Gehrels 2002; Giesler et al. 2016) and to the south
(Crawford et al. 1987). Overall,metamorphic grade and deformation
increase from west to east, reaching their peak in the high-grade
gneiss complex east of the Great Tonalite Sill complex within the
Coastal batholith (Brew et al. 1989).
Cohen and Lundberg (1993) demonstrated that rocks of the

Gravina basin are dominantly volcaniclastic wackes and argued
that they were derived from an arc terrane, which is commonly
inferred to have been located to the west. More recent studies of
the sedimentary rocks in the main outcrop belt, referred to as
the western facies, and those in the eastern belt, showed that
each belt contains different detrital zircon assemblages (Supple-
mentary Fig. S82). The western facies contains threemain popula-
tions of 417–411, 165–140, and 120–105 Ma detrital zircons,
whereas rocks of the eastern facies yield a pronounced Jurassic
peak of 156 Ma with smaller groups of 380–310, 560–520, 1310–
920, and 1955–1755 Ma, but none of Cretaceous age (Kapp and
Gehrels 1998; Yokelson et al. 2015). The 120–105 Ma zircons in
the western facies were likely derived from plutons of the Muir–
Chichagof suite of biotite–hornblende granodioritic, tonalitic,
and gabbroic plutons, located mainly to the west, along with the
Jurassic 165–145 Ma Chilkut–Chichagof plutons (Brew and Morrell
1983), which are the likely source for the Jurassic detrital zircons in
the western parts of the trough. Several 110–105 Ma Alaska-type
mafic–ultramafic bodies crop out along the belt and attest to mafic
arc magmatism (Himmelberg and Loney 1995; Rubin and Saleeby
2000). A dioritic pluton, the Jualin diorite (Supplementary Fig. S82),
is unconformably overlain by conglomerate holding boulders of
the diorite, as well as a variety ofmetavolcanic andmetasedimen-
tary clasts (Redman 1984). The pluton was dated by U–Pb on
zircon to be 105 6 1 Ma (Kapp and Gehrels 1998), so provides a
maximum age for the deposition of the upper units of the sedi-
mentary succession within the Gravina basin, as well as the sub-
sequent deformation andmetamorphism.

Fig. 9. Detrital zircon histograms showing relative probability vs. age
for sedimentary rocks of the Methow block, modified from Surpless
et al. (2014). These plots show the typical Jurassic basement peaks as
well as the 130–100 Ma arc peaks. The Ta vs. Yb discrimination diagram
shows that fine-grained sedimentary rocks within the basin reflect arc
debris, which fits with their 130–100 Ma age. ORG, ocean-ridge granite;
WPG, within-plate granite. Gravina arc samples from Rubin and Saleeby
(1991). The lower plot has few total zircons, but their peaks suggest a
southern Gondwana–Ouachita source. [Colour online.]
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Haeussler (1992) studied the structural development of the ba-
sin and found evidence for an early extensional phase character-
ized by normal faults, followed by younger isoclinal folds, thrust
faults, and at least one 12 km wide shear zone. The eastern mar-
gin of the basin is tectonic with east-dipping reverse, or thrust,
faults placing high-grade rocks of the Coast batholith and slices
of Taku terrane over rocks of the Gravina Basin to the west (Rubin
et al. 1990). Eastern facies rocks are typically at higher metamor-
phic grade, as they commonly contain kyanite or sillimanite and
are more deformed than western facies rocks. They are domi-
nated by Jurassic detrital zircons: Lower Cretaceous zircons are
absent (Yokelson et al. 2015). The dramatic grade jump from west
to east suggests that the westerly vergent faults are not thrusts
but are reverse faults.
Following deposition of the Gravina sequence, the rocks were

metamorphosed, deformed, and then intruded by a swarm of post-
deformational 95–90 Ma plutons (Haeussler 1992; Himmelberg
et al. 2004; Gehrels et al. 2009). To the east, many 99–89Ma plutons
were emplaced in the high-grade hinterland of the orogen
(Gehrels et al. 2009; Girardi et al. 2012). The plutons are
generally plagioclase–seriate bodies of biotite–hornblende
granodiorite and tonalite (Douglass et al. 1989; Himmelberg
et al. 2004). Their emplacement age is poorly constrained by
modern standards but appears to be between 102 and 88 Ma.
The largest is the post-tectonic Moth Bay pluton (Supplementary
Fig. S82) (Cook et al. 1991; Saleeby 2000; Rubin and Saleeby 1987,
2000) from which a sample yielded U–Pb analyses of highly dis-
cordant zircon fractions with an age of 102 +3/�2 Ma, and a
40Ar/39Ar date of 966 1 Ma (Sutter and Crawford 1985). Other plu-
tons were dated as 90.5 and 88.5 Ma with K–Ar ages of 93–80 Ma
(Saleeby 2000). The Moth Bay pluton postdates deformation

and metamorphism of the schists and is a biotite–epidote–
hornblende tonalite emplaced at about 9 kbar on the basis of
geobarometry in kyanite–sillimanite-bearing schists in the au-
reole and Al-content in hornblende from the pluton (Cook et al.
1991). These data collectively demonstrate that the Gravina basin
was inverted, thickened, cut by plutons, and exhumed — all in
<10 million years. Sparse trace element geochemistry is only
available for a few samples from the Moth Bay body and they plot
as post-collisional rocks (Supplementary Fig. S82).

Wrangellia – North America collision in Alaska
To the north, the Peninsular Ranges orogen continues around

the Gulf of Alaska more or less parallel to its arcuate shoreline.
There, an older Jurassic collision between the Peninsular and
Wrangellian terranes formed what is commonly referred to as
the Wrangellia composite terrane (Trop and Ridgway 2007). The
area is transected and complicated by younger strike slip faults,
such as the Border Ranges and Denali faults, both of which have
poorly constrained displacement.TheWrangellia composite terrane
is interpreted to have collided with the more northerly Yukon–
Tanana terrane during closure of the siliciclastic Kahiltna basin in a
double northward-dipping tectonic scheme (Pavlis et al. 2019, 2020)
or in a two-phase hypothesis involving southward subduction dur-
ing the Jurassic within the basin, followed by northward-directed
subduction along the south side of the Wrangellia composite
terrane after the collision (Sigloch andMihalynuk 2020).
The relatively low grade Wrangellian terrane (Fig. 10) com-

prises carbonates and a 1–3.5 km thickness of dominantly sub-
aerial high-Ti pillow and subaerial basalts (Lassiter et al. 1995;
Greene et al. 2008). They overlie volcanic and sedimentary rocks
of the Permian Skolai Group (Trop et al. 2002). Following the

Fig. 10. Geological sketch map of south-central Alaska illustrating the distribution of some of the geological features discussed in the
text. CA, Chisana arc. Modified from Trop and Ridgway (2007). Note location of Fig. 11. [Colour online.]
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collision of Wrangellia with the Peninsular terrane, the amalga-
mated terrane contained a variety of Jurassic rocks, including the
volcano-plutonic 202–169 Ma Talkeetna (DeBari and Coleman
1989; Clift et al. 2005; Rioux et al. 2007) and Chinitna arcs (Plafker
et al. 1989), as well as mid-Jurassic sedimentary rocks of the Tux-
edni Group (Trop et al. 2005; Amato et al. 2007). We plotted
unpublished geochemistry from plutonic rocks associated with
the Talkeetna arc (M. Rioux, personal communication, 2019) on
our discrimination diagrams and found that most have arc geo-
chemistry, but one 152.7 6 1.3 Ma pluton, mapped as transecting
the Peninsular–Wrangellia suture (Rioux et al. 2007), displays
typical post-collisional slab break-off characteristics with Sm/Y >
2.5, Sr/Y > 20, and Nb/Y> 0.4. Thus, map relations, timing, and geo-
chemistry provide a minimum age for the Penisular–Wrangellian
collision. The youngest arc-like pluton dated by Rioux et al. (2007) is
168.8 Ma and provides a maximum age for collision. Following the
Jurassic collision and the Early Cretaceous opening of the Kahiltna
basin, rocks of theWrangellia composite terrane lay to the south of
the Kahiltna basin, whereas rocks of the Yukon composite terrane
lay to the north, although the precise extent of the terrane is uncer-
tain due to unresolved displacement on the Denali fault.We start by
examining the Cretaceous rocks and their interactions, then
examine the Jurassic collision as it is similar in many respects to
the Peninsular Ranges orogeny.

Chisana arc
Wrangellia contains the only evidence within the region for an

arc complex (Chisana arc) during the Early Cretaceous. This 133–
98 Ma arc, is best exposed in the Nutzotin Mountains of south-
central Alaska, where andesitic lavas, along with subordinate
volcaniclastic rocks, unconformably overlie deformed sedimen-
tary rocks of the Nutzotin basin (Fig. 11), and are intruded by
calc-alkaline plutons of the White Mountain granitoid suite

(Manselle 2019; Snyder and Hart 2007; Trop et al. 2020). These rela-
tions, plus detrital zircon ages from sedimentary rocks of the dis-
membered Dezadeaash–Nutzotin basin (Lowey 1998, 2019; Fasulo
2019) — all older than about 133 Ma — demonstrate that the Nut-
zotzin and Kahiltna basins were not fault-bounded segments of the
same basin, or even the Gravina basin to the south, as commonly
claimed (Sigloch andMihalynuk 2017, 2020; Pavlis et al. 2019, 2020).
However, correlation of the Nutzotin basin with the coeval Peñas-
quitos, Cucurpe, andMariposa formations farther south is possible.
These successions all carry the Tithonian bivalve, Buchia piochii, and
were deformed by around 130 Ma, prior to the deposition of overly-
ing rocks, which were basinal and (or) arc rocks of the Peninsular
Ranges orogen (Mauel et al. 2011; Peryam et al. 2012; Kimbrough
et al. 2014; Manuszak et al. 2007; Manselle 2019). Rocks of the Gravina
basin show a clear gap in detrital zircon ages between 147 and 122Ma
(Yokelson et al. 2015), but there is no obvious break in the strati-
graphic section (Supplementary Fig. S82).
Farther west, a number of Early Cretaceous tonalite to trondh-

jemitic plutons (123 6 2 Ma) intrude uppermost Middle Jurassic
metasedimentary rocks of Wrangellia (Labrado et al. 2015) and
may also represent arc magmas. In a recent study, using sparse
geochemistry and isotopes from the intrusions, Mahar et al.
(2019) suggested the intrusions might have been emplaced above
a slab-window as they are isotopically primitive low-K calc-
alkaline rocks. Although most of their analyzed samples show
elevated Sr/Y values, all of them have Sm/Yb <2.5, which sug-
gests that they are arc magmas (Hildebrand andWhalen 2017).

Kahiltna trough
The now collapsed and inverted Kahiltna trough (Fig. 10) lies to

the north (current coordinates) and sits between more outboard
Wrangellia and the inboard metamorphic Yukon–Tanana and
Farewell terranes (Box et al. 2019; Kalbas et al. 2007; Trop and

Fig. 11. Geologic sketch map showing distribution and ages of 133–100 Ma Chisana arc rocks sitting unconformably upon deformed rocks of the
Nutzotin basin and Wrangellia (modified from Richter et al. 2006 and Manselle 2019 with additional data from Snyder and Hart 2007). Note that
both volcanic (green) and plutonic (brick red) rocks plot in the arc field on a Nb vs. Y discrimination diagram of Hildebrand and Whalen (2017).
See Fig. 10 for location. bio, biotite; hbd, hornblende; WMGS, White Mountain granitoid suite. [Colour online.]
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Ridgway 2007; Hampton et al. 2007, 2010). Hampton et al. (2010)
measured eight sections through the basin, collected and dated
detrital zircons, and found MDAs based on the weighted mean of
the three youngest zircons to range from 143 to 102 Ma. Box et al.
(2019), on the basis of sandstone petrography and detrital zircon
age populations, divided the rocks of the basin, which are domi-
nantly turbiditic, into three distinct petrofacies, the lower two of
which remained as separate deposystems until the Late Cretaceous:
(i) a northwestern belt with dominantly quartzose debris withMDAs
all older than 100 Ma, typically 107–103 Ma; (ii) a southeastern belt
characterized by igneous debris with detrital zircon age peaks
ranging from about 170 to 142 Ma, with MDAs ranging from 146
to 103 Ma; and (iii) a younger belt, also dominated by igneous de-
bris and with Late Cretaceous detrital zircon age peaks, in places
accompanied by a broad 160 Ma peak, ash beds dated at 97 and
93 Ma, and Cenomanian–Turonian MDAs. Similar to more south-
ern sectors of the basin, such as the Gravina and Arperos sectors,
the basin must have been sufficiently wide, or configured such
that debris from either side did not cross the basin and inter-
mingle in any significant abundance (Box et al. 2019).
There were two obvious episodes of deformation of the basin-

fill rocks, with the oldest bracketed between 103 and 97 Ma and
consisting of southeast-dipping thrust faults with tight over-
turned folds that verge northwest, which represent deformation
during the Peninsular Ranges orogeny; whereas the youngest is
bracketed to be about 80 Ma (Box et al. 2019) and probably repre-
sents Laramide deformation.

Yukon–Tanana and Farewell terranes
North of the Kahiltna basin and across the Denali fault, the

metamorphic Yukon–Tanana terrane and the Farewell terrane,

collectively referred to as the Yukon Composite terrane (Fig. 10),
are both mainly composed of Paleozoic metasedimentary and
meta-igneous rocks. The more westerly Farewell terrane com-
prises Cambrian to Pennsylvanian carbonates, Devonian and
Triassic phosphatic black shale, barite, and sandstone, with a va-
riety of gabbroic sills and pillowed basalts (Bundtzen and Gilbert
1983; Bradley et al. 2006). The Yukon–Tanana terrane sensu lato is
highly variable with complex relations and generally poor out-
crop, but it is dominated by Paleozoic greenschist to amphibolite
grade metamorphic rocks, in places tectonically overlain by Mis-
sissippian to Triassic oceanic igneous and metamorphic rocks
(Templeman-Kluit 1979; Dusel-Bacon et al. 2006; Colpron et al.
2006). In the extreme southeastern sector of the terrane, east of
Whitehorse and crossing into the Selwyn basin, are some 115–
95 Ma plutons and ignimbrites with typical slab failure geochem-
istry; but they are likely related to the Sevier orogenic event (Hart
et al. 2004; Hildebrand 2015; Hildebrand andWhalen 2017).
Cu–Au porphyry mineralization is commonly associated with

slab break-off magmatism (Solomon 1990; de Boorder et al. 1998;
Cloos andHoush 2008; Hildebrand 2009; Hou et al. 2015; Hildebrand
and Whalen 2017) and even though the heavily mineralized 99–
88 Ma Pebble porphyry complex (Supplementary Fig. S92) lies sev-
eral hundred kilometres to thewest, it is likely also a 100–85Ma slab
failure plutonic suite (Olson 2015) related to the Wrangellia –

Yukon–Tanana – Farewell composite collision.

McHugh complex
An outboard trough, exposed along the south side of Wrangel-

lia composite terrane as the McHugh complex, was active after
101 Ma when it received detritus, including 99–82 Ma detrital zir-
cons (Amato and Pavlis 2010; Amato et al. 2013). These workers

Fig. 12. Modified stratigraphic chart from Amato et al. (2013), showing their concept of the relative locations of different stratigraphic packages
through time. The coloured dots represent their maximum depositional ages from detrital suites and clearly show the >50 million year gap in
sedimentation, which because they held to a northerly directed subduction model, were forced to attribute to subduction erosion. Our model
does not require a phantom accretionary prism because we found that subduction was southerly on the other side of Wrangellia. We attribute
the sedimentation of the McHugh Creek assemblage to post-collisional exhumation on the outboard side of the collision zone. The 100–90 Ma
detrital zircons were derived from post-collisional plutons emplaced following slab break-off, similar to those found in areas to the south.
[Colour online.]
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interpreted the McHugh complex as deposited within a fore-arc
setting (Fig. 12), but temporally, spatially, and compositionally
the basin is similar to the Upper Cretaceous Valle Formation of
Baja California (Kimbrough et al. 2001), the Upper Cretaceous
Great Valley Group of central California (Mansfield 1979), and the
Upper Cretaceous Nanaimo basin of southern British Columbia
(Matthews et al. 2017), all three of which developed behind the
east-facing arc on the upper plate and contain Cenomanian–
Turonian debris eroded from the pluton-riddled and exhuming
hinterland. Additionally, plutons of the 123 6 2 Ma tonalite–
trondhjemite suite (Mahar et al. 2019), which on the basis of
sparse geochemistry could be arc rocks, sit just inboard of the
McHugh rocks, similar to other arc suites to the south.
As suggested earlier, these sedimentary rocks might typically

be deposited in outboard troughs, or perhaps open ocean, during
the later stages of arc-continent collision and mark slab failure,
for it is at that time that the partially subducted lower plate is
freed of its oceanic anchor, so rises rapidly (see Supplementary
Fig. S102). In the cases along the westernmargin of the Peninsular
Ranges orogen, the reverse faults that separate the higher-grade
hinterland from the lower-grade back-arc region probably ap-
proximate, or mark, the leading edge of the torn lower plate as it
rose and exhumed the orogenic hinterland. Sedimentary debris
was shed from the exhuming hinterland located to the east and
deposited west of the reverse faults.

Summary of Wrangellian – Yukon–Tanana collision: implications
for other models
The Cretaceous geology of south-central Alaskan parallels that

seen farther south and so we include it in the Peninsular Ranges
orogen. In Alaska, the Early Cretaceous seaway, recorded by
strata of the Kahiltna basin, where contrasting clastic debris was
shed from opposite flanks of the trough, coupled with the Early
Cretaceous Chisana arc sitting on lower-grade Wrangellian base-
ment lying to the south, and contrasting with the higher-grade
metamorphic Yukon composite terrane, devoid of Early Creta-
ceous arc rocks, are typical relations of the Peninsular Ranges
orogen farther south. The south-dipping, northward-vergent
thrust faults in the basin indicate that the Yukon composite ter-
rane was the lower plate as the basin closed, a scenario consistent
with the contrasting metamorphic grades between this terrane
and Wrangellia. Some possible post-collisional slab failure
plutons, such as the Tok-Tetlin, the Cheslina, and the Gardiner
Creek plutons have ages ranging from 94 to 88 Ma (Richter et al.
1975; Hart et al. 2004), but crop out north of the Denali fault, so
may have been located elsewhere during the Upper Cretaceous.
Overall, the conjectures of Pavlis et al. (2019, 2020) fit well

with the standard paradigm of eastward-dipping subduction, but
are inconsistent with the geological record. For example, their
model invokes two northward-dipping subduction zones, one
beneath Wrangellia and another beneath Yukon–Tanana, but
there is no evidence for an Early Cretaceous arc on Yukon–
Tanana terrane, nor is there any evidence for an accretionary
prism along the southern side ofWrangellia over the critical 150–
100 Ma interval (Fig. 12). We claim that our model for west-
dipping subduction beneath an Early Cretaceous arc sitting on
Wrangellian basement within the Peninsular Ranges composite
terrane, and attempted subduction of the higher-grade Yukon–
Tanana – Farewell block during the Peninsular Ranges orogeny,
is more compatible with the known geology. For example, we are
not compelled to invoke any processes, such as subduction ero-
sion, to explain the absence of an accretionary prism.
The model of Sigloch and Mihalynuk (2017, 2020) focuses

largely on the Jurassic, and so does not incorporate the critical
evidence for Early Cretaceous rifting and development of the arc
on the western Peninsular Ranges composite terrane (Hildebrand
and Whalen 2014b, 2017). Considerable geological evidence for

the development of the Early Cretaceous seaway negates the
requirement for eastward-dipping subduction beneath the amal-
gamated Jurassic North American block during the Cretaceous.
We agree with Sigloch and Mihalynuk (2017, 2020) that the

Jurassic collision of the Talkeetna arc with Wrangellia was, in
current coordinates, south-dipping (see Hildebrand 2013, p. 71).
Along the north side of the Talkeetna arc, south-dipping thrust
faults accompanied by deposition of clastic debris — sitting
unconformably upon platformal siliciclastics and carbonate strata
of Wrangellia — coarsens upward from marine mudstones and
sandstones to conglomerate (Trop et al. 2002; Manuszak et al. 2007).
These relations suggest that the leading edge of Wrangellia was
pulled beneath the Talkeetna arc during the collision.
On the basis of our analysis of unpublished geochemical data

(M. Rioux, personal communication, 2019) the youngest dated arc
rock in the Talkeetna arc is a �169 Ma quartz diorite pluton,
which provides a maximum age for the collision of the arc with
Wrangellia. And as noted earlier, the only post-collisional slab
failure pluton yet recognized in the Talkeetna collision zone is
153 Ma, so there is a gap of some 16 million years between the
youngest known arc rock (dated at 169 Ma) and the only docu-
mented post-collisional slab failure pluton. On the south side of
the Talkeetna–Wrangellia collision zone, coarse 167–150 Ma bath-
olithic debris of the Naknek Formation was shed southward from
the hinterland belt as it was exhumed on north-dipping reverse
faults (Trop et al. 2005). A more recent regional study of the
formation (Herriott et al. 2017, 2019), including detrital zircon
analyses, suggest that the trough represents the beginning of
“ubiquitous batholithic provenance” generated by rapid exhu-
mation of the plutonic roots of the Talkeetna arc with tectonism
as the driving force. This scenario is precisely what occurs on the
opposite side from the collisional suture and fore arc in the out-
board back-arc setting along the Peninsular Ranges orogen from
Mexico to Alaska or in younger arc-continent collisions like
Papua, New Guinea (Supplementary Fig. S102).
Thus, in contrast to Pavlis et al. (2019, 2020) and Sigloch and

Mihalynuk (2020), we favour westerly dipping subduction for
both the Jurassic and the Cretaceous collisions involving Wran-
gellia. We note that following collisions, coarse debris, including
abundant material largely derived from post-collisional plutons
and their wall rocks, was shed outboard (westward) from the hin-
terland belt as it was rapidly exhumed. In the Sierran paradigm
of long-lived eastward subduction, these basins are considered
fore-arc basins, but in our model, they form after collision, not
when the arc was active. Thus, the basins should be dominated
by post-collisional debris with detrital zircons largely derived
from slab failure plutons rather than older arc magmatism. The
spectrum of detrital zircons in the Chinitna and lower Naknek
formations of the Naknek basin suggests that the Talkeetna–
Wrangellian collision took place at about 167 Ma and that the
stratigraphically lower Chinitna contains more arc debris (202–
167 Ma) than the overlying Naknek Formation; but both forma-
tions are dominated by 161–157 Ma age peaks (Herriott et al.
2019), consistent with our back-arcmodel for deposition of debris
from orogenic hinterlands.

Cordilleran outliers: Salinia and the Peruvian coastal
batholith
Although here we progressed from south to north, we believe

that another sector of the Peninsular Ranges orogen may have
been dismembered by strike-slip fault(s) and is now divided
between central California and coastal Peru (Hildebrand and
Whalen 2014a). Located west of the Great Valley of California,
and commonly considered by some to have formerly occupied
the space between the Sierra Nevada and the Peninsular Ranges
(Ducea 2001; Barbeau et al. 2005; Chapman et al. 2014), the Salinian
block has long been recognized as an anomalous block (Ross 1978)
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and comprises 3–7.5 kbar amphibolite–granulite facies gneiss and
schist lacking pure quartzite and carbonate rocks characteristic of
theNorthAmericanmargin (Ross 1977), all cut by deformed plutons
in the age range of 130–103 Ma, as well as more easterly, nonde-
formed 100–82 Ma plutons ranging in composition from gabbro
to granodiorite (Mattinson 1978, 1990; James 1992; Kistler and
Champion 2001; Kidder et al. 2003; Chapman et al. 2014). The plu-
tons with trace element geochemistry plot as slab failure rocks
(Hildebrand and Whalen 2017, p. 37), but the Salinian block does
not contain low-grade, pre-100 Ma volcanics and only a few
130–103 Ma arc plutons, typical of other sectors of the Peninsular
Ranges orogen. This led Hildebrand and Whalen (2014a) to suggest
that it once belonged with the Coastal batholith of Peru, which
some recognized to be another anomalous block (Loewy et al.
2004). There, 7–9 km of relatively low-grade arc rocks, the mainly
latest Aptian–Albian rocks of the Casma and related groups, were
deposited in the Huarmey–Cañete trough (Cobbing 1978; Atherton
et al. 1985; Pitcher 1993; deHaller et al. 2006), andwere deformed at
100 Ma. Although the batholith contains a few post-collisional
plutons, an exhumed metamorphic hinterland and voluminous
100–85 Ma slab failure plutons are absent.
We showed earlier that, except for a small gap in the Mojave

Desert where the Peninsular Ranges orogen was transected by
the Late Cretaceous – Paleogene Laramide orogen, the thrusts
and post-collisional plutons of the Peninsular Ranges orogen are
continuous from Mexico to Utah. Thus, instead of lying between
the Sierra Nevada and the Peninsular Ranges batholiths, the Sali-
nia block was more likely located to the south, and was possibly
joined with the Arequipa block and its cover of Casma volcanics,
which, on the basis of magmatic ages and deformation, collec-
tively formed another sector of the Peninsular Ranges orogen
(Hildebrand and Whalen 2014a, 2017). Although conflicting pale-
omagnetic data for the Salinian block exist (Champion et al. 1984;
Whidden et al. 1998), paleontological data suggest that the faunal
assemblage of Salinia is a reasonable match with those in the
Peninsular Ranges of southern California (Elder and Saul 1993),
and they are considered to be far-traveled rocks (Hagstrum et al.
1985).

Surface geology andmantle tomography
Three of the Jurassic and two — or possibly all — of the three

Cretaceous arc-continent collisions were apparently built above
westerly dipping subduction zones. The three Jurassic collisions,
readily resolved in the western Sierra Nevada (Hildebrand 2013),
likely occurred offshore from North America (Johnston 2008),
and the initial docking of the partly assembled ribbon continent
of Hildebrand with North America occurred during the Sevier
orogeny at 124–120 Ma (Hildebrand 2013, 2014). This event was fol-
lowed by the Peninsular Ranges orogeny at 100 Ma, and the Lara-
mide during the Campanian, none of which produced an arc on
cratonic North America.
Since the early 90s, a huge, steeply dipping fast zone in the

mantle beneath eastern North America was recognized by to-
mography and interpreted as a fossil subducted slab (Grand
1994). As North America migrated westward during the opening
of the Atlantic Ocean, it overrode the torn and sinking oceanic
lithosphere previously located to the west. Sigloch and Mihalynuk
(2013) showed how westerly — but not easterly — dipping slabs,
could form steeply inclined to vertical slab walls in the mantle as
North Americamigratedwestward.
The immense size of the East Coast fast tomographic anomaly

(Sigloch 2011), with a width of 8–10 degrees of longitude, which at
40°N are 85 km/degree, translate to a width of 680–850 km. Com-
monly, the torn and sinking slabs are shown as buckling concer-
tina-fashion as they sink (Lee and King 2011; Sigloch and
Mihalynuk 2017) to produce the required width; but in this case
the anomaly probably represents an amalgamation of all the Ju-
rassic and Cretaceous slabs, because the thickness of older

oceanic lithosphere is about 80–100 km (Hamza and Vieira 2012).
If subducted slabs are indeed amalgamated — or appear to be so
at the current resolution of mantle tomography — and new
ocean basins opened within the Cordillera, as documented here,
then attempts tomatchmantle tomography with surface geology
of the Cordillera cannot be quantitatively evaluated as claimed
(Clennett et al. 2020).
Whereas the amalgamated, or tomographically irresolvable

slabs, imply a long-lived zone of westerly subduction, Hildebrand
and Whalen (2014a) noted the two long-lived mantle upwelling
zones, Jason and Tuzo (Burke and Torsvik 2004; Torsvik et al.
2008; Burke 2011; Spencer et al. 2019), and postulated that a com-
plimentary long-lived mantle downwelling zone existed to the
west of North America. They speculated that it may have formed
a boundary between the Panthalassic and Pacific realms, and
when the various arcs and other fragments that had accumulated
above the downwelling zone collided with the Americas, Pantha-
lassa ceased to exist. The continent then overrode the torn slabs
beneath the accreted collage. We wonder whether the demise of
Panthalassa marks the switchover from west-dipping subduc-
tion, which appears to have dominated Panthalassic–Cordilleran
interactions, to the current eastwardly dipping Pacific plates
beneath the Americas.

Conclusions
In this two-part contribution, we summarized our geological

evidence over the length of the Cordillera to demonstrate that
the paradigm of long-lived eastward subduction runs counter to
the bulk of evidence.We conclude with the following points.

1. The Peninsular Ranges orogen is a �100 Ma orogenic belt
that extends from Mexico to Alaska and beyond. The orogen
formed when a trough, open for about 35 million years along
the western margin of North America, closed by westerly
subduction, juxtaposing a Lower Cretaceous arc complex
built on the ribbon-like Peninsular Ranges composite ter-
rane along the western side of the trough, over a passive con-
tinental margin, which was locally capped by a west-facing
carbonate platform developed on the eastern North Ameri-
can side of the trough (Fig. 13).

2. Within a million years or so following the collision, the hin-
terland was exhumed and intruded by gregarious tonalite–
granodiorite–granite plutons, which were emplaced over a
period of 10–15 million years. The timing suggests that the
plutons and exhumation formed in tandem when the oce-
anic lithosphere broke off from the partially subducted
North American plate.

3. Because the trough formed after at least one Jurassic co-
llision and its post-collisional magmatism, many different
rocks and terranes formerly attached to North America were
rifted and separated at about 135 Ma, only to return at 100 Ma,
likely in different places than their original locations.

4. The large mid-Cretaceous batholiths of the North American
Cordillera are composed of two contrasting magmatic suites
derived from distinctmantle sources and emplaced at different
times. The older arc suite, which developed on the Peninsular
Ranges composite terrane from Mexico to Alaska, represents a
generally low-standing marine arc built on thinned litho-
sphere over a westward-dipping subduction zone, whereas the
younger suite was post-collisional and invaded the orogenic
hinterland during exhumation due to break-off and melting of
the subducting slab.

5. The so-called “flare-up” events in Cordilleran arcs are the result
of collision followed by slab break-off, not arcmagmatism.

6. Those who utilize Andino-type, or cyclic hi-flux, models for
the development of Cordilleran batholiths, fail to recognize
that the transition from arc magmatism to post-collisional
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hi-flux magmatism occurred rapidly, perhaps within a mil-
lion years, so that there is simply no time to thicken the
crust by underplating or for heat transfer by conduction to
melt underthrust cratonic material.

7. The post-collisional magmas appear to have been derived
from melting of the basaltic–gabbroic upper part of the sub-
ducted oceanic lithosphere augmented by fractional melting
of the SCLM as magmas rose toward the crust. Thus, slab
break-off magmas have trace element concentrations and
ratios similar to slab window rocks, but where they rise
through old and enriched cratonic lithosphere they have
enriched radiogenic isotopes.

8. There is no compelling evidence along the entire western
edge of the Peninsular Ranges composite terrane for a fore-

arc basin or accretionary prism during Early Cretaceous
arc magmatism. Instead, voluminous quantities of mate-
rial were shed westward into the back-arc region after the
100 Ma collision and termination of arc magmatism,
when abundant detrital zircons from the 100–90 Ma post-
collisional plutons document rapid exhumation of the
orogenic hinterland.

9. Retro-arc models for the Sevier thrust-fold belt must be
reconsidered, as there was no eastward subduction beneath
North America at about 120 Ma when the Sevier thrusting
initiated. Instead, the 130–100 Ma Alisitos and related arc seg-
ments involved in the Peninsular Ranges orogeny were built
offshore above westerly, not easterly, dipping subduction
zones.

Fig. 13. Our tectonic plate scale model for the Peninsular Ranges orogeny involves closure of a Lower Cretaceous seaway by west-directed
subduction and arc magmatism from �130 Ma until the collision of the arc with North America at 100 Ma. The competing buoyancies of
the oceanic and cratonic lithosphere led to rapid tearing and break-off of the subducted plate and an influx of 99–84 Ma post-collisional
magmatism during exhumation of the orogenic hinterland. During exhumation and plutonism, mainly 99–90 Ma debris was shed
westward into the old back-arc region. These relations hold over the length of the Cordillera, from southern Mexico to Alaska. Pfi,
Precambrian. [Colour online.]
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10. We suggest that the huge East Coast tomographic anomaly,
which underlies eastern North America, could represent
several amalgamated slabs rather than a single slab that
buckled. In our conception, the three westerly subducted
Jurassic slabs occurred offshore beneath the ribbon conti-
nent, but failure of the west-dipping slabs, represented by
the Sevier and Peninsular Ranges orogens, occurred during
and after the 120 Ma Sevier collision of the ribbon with North
America. As North America migrated westward, it collided
with the ribbon continent and overrode the Jurassic slabs:
the two Cretaceous slabs were added to the mass of sub-
ducted slabs shortly afterwards because they could not pene-
trate the slab wall.
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Abstract
The Cretaceous Western Interior Basin reflects the interplay between the North American craton and allochthonous terranes

to the west. We divide the basinal stratigraphy into three successions, Aptian–Albian, Cenomanian–Turonian, and Santonian–
Maastrichtian, each related to periods of deformation in the adjacent fold-thrust belt. Here we focus on the Cenomanian–
Turonian succession, where progressive west to east uplift and fluvial incision of older Aptian–Albian sedimentary rocks (Cedar
Mtn–San Pitch–Thermopolis–Skull Creek–Mannville) are interpreted as a migrating forebulge. Uplift was underway at 103 Ma in
the west (Paddy–Blackleaf–Muddy sandstones) and propagated eastward throughout the trough by 99.5 Ma (Viking–Bow Island–
Newcastle sandstones). The incised fluvial valleys were subsequently filled by swampy and shallow marine facies, then overlain
by dark, marine Neogastroplites-bearing shale and associated bentonites of the 100–97.5 Ma Shell Creek–Mowry–Slater River–
Goodrich–Shaftesbury–Westgate shales. The shales are characterized by a distinctive condensed horizon with abundant fish
scales, teeth, and bones. They are interpreted as outer-trench slope deposits, with the overlying anoxic horizon representing
a starved isochronous unit formed atop the slope deposits. The starved horizon is overlain by prodeltaic muddy clinoforms of
easterly migrating clastic wedges (Trevor–Dunvegan–Frontier–Cintura–Mexcala) that can be traced 800 km atop the fish-scale
hash and contain hinterland-derived 99–90 Ma detrital zircons. Although the Western Interior Basin has long been considered
a retro-arc trough, the overall succession instead suggests that the Cretaceous–Turonian part represents a collisional foredeep
created during the ∼100 Ma collision between the arc-bearing Peninsular Ranges composite terrane and North America. The
accretion brought tyrannosaurids, pachycephalosaurs, snakes, and marsupials to North America.

Key words: foredeep basin, dinosaur invasion, Cordillera, Peninsular Ranges orogeny, stratigraphy, Western Interior Basin

Introduction
Much of the western half of Cretaceous North Amer-

ica comprised a northerly trending couplet of distinct,
yet intimately interrelated, tectonic entities: the Cordillera
and the Western Interior Basin (Fig. 1). The mostly high-
standing Cordillera consists of varied geological terranes,
complexly mingled, mixed, rifted, and amalgamated, and
mainly Phanerozoic; whereas to the east, the Cretaceous
Western Interior Basin was generally a subdued, low-lying,
asymmetric drainage trough, built on cratonic North Amer-
ica, and received sediment from Cordilleran uplands to the
west, as well as more muted cratonic topography to the east
(Roberts and Kirschbaum 1995; Carpenter 2014; Finzel 2014;
Miall and Catuneanu 2019). From time to time, the trough
was continuous from the Tethyan realm of the Gulf of Mex-
ico to the Boreal realm of the Arctic Ocean (see Kauffman and
Caldwell 1993), and so is commonly referred to as the West-
ern Interior seaway.

Rocks of the Western Interior Basin unconformably overlie
platformal siliciclastic and carbonate rocks of the west-facing
Cambrian to Mesozoic platformal margin of North America.

In contrast, rocks of the Cordilleran terranes are largely
considered to be composite, allochthonous, and exotic to
North America, although in some cases their provenance re-
mains equivocal (Helwig 1974; Coney et al. 1980; Coney 1981;
Monger et al. 1982; Hildebrand 2013). The boundary between
the two geologic regions is represented by a linear belt of east-
erly vergent folds and thrusts of widely different ages, but
collectively known as the Cordilleran fold-thrust belt, with
an eastern limit that closely coincides with the cratonic hin-
geline (Stokes 1976; Aitken 1989).

During the mid-1960s while working in the fold-thrust belt
of the Idaho–Wyoming border region, Armstrong and Oriel
(1965) recognized that Mesozoic folds and thrust faults were
progressively younger eastward, and as the deformation mi-
grated, coarse detritus was deposited in front of the thrusts.
In a related paper, Bally et al. (1966) used seismic data to
demonstrate that the Canadian portion of the fold-thrust
belt, along with high-grade gneiss and granitic plutons far-
ther west, sat structurally upon the western edge of cratonic
North America and that the progressively eastward-migrating
thrust stack, not only loaded and depressed the subjacent
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Fig. 1. Location of the Western Interior Basin in the pro-
posed paleogeography of North America during the Creta-
ceous. Source map © 2013 Colorado Plateau Geosystems Inc.

lithosphere, but that it shed clastic detritus into an asymmet-
rical basin migrating eastward in front of the thrust wedge.
Their synthesis implied, as they noted, that the structurally
higher and more westerly thrust sheets formed prior to those
to the east.

By 1969, in their zeal to explore and understand the
landward implications of plate tectonics, early advocates
used a Cenozoic Andean framework to interpret the
strongly deformed Mesozoic rocks of the high-pressure, low-
temperature Franciscan thrust complex, located in western
California, with similar age sedimentary rocks of the Great
Valley Group, plutons of the Sierran-Klamath batholith, and
the Cordilleran fold-thrust belt as a two-sided orogen: bound
on both sides by major, but opposed, structural elements
that collectively reflected eastward subduction of the Pa-
cific seafloor beneath North America from the Jurassic to
the Eocene (Dickinson 1970; DeCelles 2004; Yonkee and Weil
2015; Pavlis et al. 2020).

This long-standing and generally accepted hypothesis has
created problems for those working in the Western Interior
Basin, as phases of thrusting, thought to range in age from
the Jurassic to Eocene, were active intermittently, and so are
difficult to link genetically to specific events farther west
(e.g., Cant and Stockmal 1989; Price 1994; Liu et al. 2005;
Plint et al. 2012; Pana and van der Pluijm 2015; Quinn et al.
2016).

Some workers (Ducea and Barton 2007; DeCelles et al. 2009;
Ducea et al. 2015) tried to resolve the problems by develop-
ing a complex model where magmatic high-flux events in the
arc were linked to retro-arc thrusting, which, in turn, led to
increased sedimentation and subsidence within the Western
Interior Basin. In this model, ∼400 km of upper crustal sedi-
mentary rocks were progressively detached from crystalline

basement and transported eastward on thrusts, causing an
equal length of middle to lower crust and subjacent litho-
spheric mantle to be underthrust beneath the hinterland and
Sierran arc, where they hypothesized that the crust melted to
provide more than 50% of Sierran arc magmatism.

However, there are several problems with this model.
First, they provide no sound mechanism for how 400 km of
buoyant cratonic lithosphere was thrust beneath the Sierra
Nevada nor where the heat to melt it might have come from.
Second, the underthrust lithosphere would still have had a
dry lower crust and refractory, intact mantle root, typical
of old cratons, which would have amplified the difficulty of
generating melts. Third, given that the Sierran high-flux plu-
tons have bulk compositions no more than 10%–12% differ-
ent than bulk lower and middle crust (Ducea 2002), a mech-
anism must be found to melt nearly all of that crust, imply-
ing a paucity of dense restite to delaminate and sink into the
mantle. Fourth, the lack of delamination, coupled with the
underthrusting of such large volumes of material, creates se-
vere room problems. Finally, the plutonic rocks of the high-
flux events can have, where there is no old, enriched subcra-
tonic lithospheric mantle, positive εNdT and Sri <0.704 that
rule out significant input of continental crust (Wetmore and
Ducea 2009; Cecil et al. 2021), or, as in the case of the Sierran
Crest magmatic suite of Coleman and Glazner (1998), have
δ18Ozircon values more typical of the mantle than continental
crust (Lackey et al. 2008; Hildebrand et al. 2018).

Other models envisaged flexural loading and isostatic com-
pensation caused by the accreted terranes, the thrust stack,
and their eroded sediments as the main driver for subsidence
in the basin (Price 1973; Beaumont 1981; Jordan 1981). Over
the next couple of decades, models were invoked to better
constrain the development of the basinal subsidence not only
in terms of thrust load and lithospheric flexure (Stockmal et
al. 1986; Stockmal and Beaumont 1987) but also by account-
ing for the shape of the orogen, the rifted margin, the shape
of the basal detachment, and the way their interaction de-
veloped through time (e.g., Jamieson and Beaumont 1988;
Beaumont et al. 1993). However, at times the basin subsided
to extend eastward to the Dakotas and beyond, which is sim-
ply too far to be explained by isostatic loads in the Cordillera.
As a result, some researchers invoked dynamic pressure vari-
ations in the asthenosphere above shallowly dipping oceanic
lithosphere beneath the craton (Mitrovica et al. 1989; Gurnis
1992; Burgess and Moresi 1999; Liu et al. 2014; Li and Aschoff
2022). In every case, the models assumed the basin was in a
retro-arc position above a persistently eastward-dipping slab
of oceanic lithosphere beneath cratonic North America——but
as dynamic topography is governed by transient variations
in the mantle density and flow, it is difficult to interpret sur-
face heights (topography) from mantle convection processes
(Molnar et al. 2015), especially where the isostatic compo-
nents are so poorly known that they cannot be removed to
better isolate the dynamic contribution (Yang and Gurnis
2016). Additionally, slab break-off and migration of a bro-
ken slab beneath a continent as it moved laterally can also
produce a downward pull on the surface, much in the way
the Indian foredeep basin (Siwaliks) was apparently deep-
ened when the torn and bent oceanic slab passed beneath
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it (Husson et al. 2014). Overall, better geological constraints
are necessary to understand the sources of the variations in
surface topography.

In this paper, we examine the mid-Cretaceous stratigraphy
of the Western Interior Basin, from the latest Albian into
the Cenomanian–Turonian. We start with a brief overview of
our tectono-sedimentary divisions for the basin to better inte-
grate our results within the larger continuum of plate interac-
tions that bear on its overall development. Then we describe
mid-Cretaceous stratigraphic units throughout the basin to
demonstrate their along-strike similarities in both lithology
and timing. We end with a model that ties the stratigra-
phy within the Cenomanian–Turonian sector of the Western
Interior Basin directly to interactions between the Peninsu-
lar Ranges composite terrane and the North American cra-
ton during the mid-Cretaceous Peninsular Ranges orogeny of
Hildebrand and Whalen (2021a, 2021b).

Tectono-sedimentary subdivisions of the
basinal stratigraphy

The bulk of the Western Interior Basin developed dur-
ing the Cretaceous (Kauffman and Caldwell 1993); although
some workers, most notably Royse (1993), along with De-
Celles and colleagues (DeCelles and Currie 1996; DeCelles
2004; DeCelles and Coogan 2006; Fuentes et al. 2011), sug-
gested that the basin initially formed during the Late Juras-
sic; but in either case, the Jurassic rocks were uplifted and
eroded prior to the deposition of Cretaceous sediments as old
as Aptian–Albian (see Heller et al. 1986). Within the southern
Canadian sector of the basin, Pana et al. (2018a, 2019) pre-
sented the results of U-Pb dating of ash beds, along with bios-
tratigraphy and sedimentology, from units as old as Lower
Jurassic, which support the concept of one or more Jurassic
foredeep basins. Within the US portion of the basin, remnant
sedimentary rocks of the Upper Jurassic Morrison Formation
are known to be 155–148 Ma (Kowallis et al. 1998, 2007) and
could be equivalent to the youngest stratigraphic units of the
Canadian Jurassic.

Regardless of the interpretation of the Jurassic stratigra-
phy, the Western Interior Basin is dominantly a Cretaceous
basin (Fig. 2). Here we divide its Cretaceous rocks into three
major intervals: Aptian–Albian (125–100.5 Ma), Cenomanian–
Turonian (100.5–90 Ma), and Coniacian–Maastrichtian (90–66
Ma), each apparently related to recognized periods of short-
ening, uplift, and exhumation in the adjacent fold-thrust belt
to the west. We use the terms Sevier (∼124 Ma), Peninsular
Ranges (∼100 Ma), and Laramide to refer to the three oroge-
nies, respectively, with the Laramide subdivided into an early
thin-skin orthogonal phase (90–72 Ma) and a younger thick-
skin transpressive phase (72–50 Ma) as per Hildebrand and
Whalen (2017).

Unconformably overlying, and cutting downward into pa-
leosols of the Jurassic Morrison Formation are incised paleo-
valleys filled with a regional pebble conglomerate (Yingling
and Heller 1992; Currie 1998; Heller et al. 1986; Heller and
Paola 1989), a regional gravelly conglomerate, that was traced
eastward as far as the Black Hills of South Dakota, which

Fig. 2. Schematic west to east US cross section illustrating our
tripartite divisions of the Cretaceous stratigraphy within the
Western Interior Basin. Each succession is correlative with
the named periods of shortening, uplift, and exhumation
recognized in the adjacent fold-thrust belt. Modified from
Weimer (1986).

suggests that the regional surface sloped gently eastward
(Heller et al. 2003). In Utah, the conglomerates are overlain
by synorogenic sedimentary rocks of the Ruby Ranch Member
of the Cedar Mountain Formation and the San Pitch Forma-
tion, which on the basis of detrital zircon populations, are in-
terpreted to have been derived largely from thrust sheets lo-
cated to the west, such as the Canyon Range thrust (Lawton et
al. 2010), and interpreted, on the basis of δ18O in dinosaur in-
gested water, to have been deposited in the arid lee of moun-
tains to the west (Suarez et al. 2014). The onset of Early Cre-
taceous thrusting in the Great Basin segment is constrained
to be ∼124–120 Ma based on (i) detrital zircon peaks in sedi-
mentary units beneath the Ruby Ranch Member (Greenhalgh
2006; Greenhalgh and Britt 2007; Britt et al. 2007; Mori 2009),
(ii) a 119.4 ± 2.6 Ma U-Pb age of palustrine carbonate, and (iii)
a good match between δ13Corg excursions in early terrestrial
foredeep sedimentary rocks and well-dated Albian features
of the global carbon isotope chemostratigraphy (Ludvigson
et al. 2010). More recent dating of detrital zircons in mud-
stone palaeosols from the lowermost member of the Cedar
Mountain Formation, known as the Yellow Cat Member, pro-
duced a maximum depositional age (MDA) of 136.3 ± 1.3 Ma
(Joeckel et al. 2020). However, most researchers consider the
overlying, more continuous, and westward thickening Ruby
Ranch Member to represent the earliest basinal fill related to
Sevier thrusting in Utah (Kirkland et al. 2016).

Regional thrusting, originally assigned to the Sevier
orogeny by Armstrong (1968), stopped during the mid-Albian
at about 105 Ma, as documented by alluvial fan and fluvial
sedimentary rocks of the Canyon Range wedge-top basin that
unconformably overstep the Canyon Range thrust (Lawton et
al. 2007). In the Wyoming sector of the belt the Ephraim Con-
glomerate, which was deposited unconformably upon Juras-
sic strata, is inferred on the basis of detrital zircon spectra
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and conglomerate clast types to be debris shed from the
oldest Paris thrust sheet. The Ephraim Conglomerate con-
tains Aptian charophytes (Gentry et al. 2018; Heller et al.
1986). Additionally, apatite fission track ages of 117 ± 6 Ma
and 111 ± 8 Ma collected along the Paris thrust attest to sig-
nificant cooling at that time (Burtner and Nigrini 1994). In
southern Canada, thrusts were shown to predate 108 Ma as
they are cut by post-kinematic plutons of the Bayonne suite
(Logan 2002; Larson et al. 2006). The sedimentary package
in Canada starts with a basal Aptian pebbly conglomerate
(Cadomin Formation), which sits unconformably upon Juras-
sic strata (Leckie and Cheel 1997; Leier and Gehrels 2011). The
regional conglomerate unit is overlain by a thick package of
siliciclastic strata contained within the Blairmore, Mannville,
Luscar, and Bullhead groups (Hayes et al. 1994), which locally
contain volcanic and plutonic clasts, and more elevated εNd
(epsilon Nd) than rocks of the Cadomin Formation (Ross et al.
2005), consistent with uplift and erosion of young volcano-
plutonic material to the west.

Throughout the basin, an unconformity within the upper-
most Albian strata forms the base of a new cycle of sedimenta-
tion and co-genetic thrust activity to the west, during which
movement on the thrust faults folded the earlier thrusts to
form structural culminations, that are more or less coeval
with part of the Cenomanian–Turonian succession of sedi-
mentary rocks within the basin (Pujols et al. 2020; Yonkee
and Weil 2015). These rocks are the main focus of this contri-
bution.

More thrusts, active some 15 Myr later during the
Santonian–Early Campanian, document another pulse of
shortening (Yonkee and Weil 2015) and are unconformably
overlain by large eastward-prograding, fluvial megafans de-
posited during the Campanian–Maastrichtian (DeCelles and
Cavazza 1999). This thrusting marks what we term the early
Laramide phase of deformation and related sedimentation
(Hildebrand 2014; Hildebrand and Whalen 2017) when the
shortening direction was approximately NE-SW. This early
Laramide event involved some northward migration of the
foredeep (Catuneanu et al. 2000), followed by contraction
and local inversion of the Western Interior Basin during the
Maastrichtian–Paleocene when the more localized thick-skin
Laramide basins and uplifts (Dickinson et al. 1988) formed as
shortening progressed to N-S (Gries 1983) and produced large-
scale meridional migration of much of the Cordillera (Enkin
2006; Gladwin and Johnston 2006; Hildebrand 2014, 2015).

The mid-Cretaceous of the Western
Interior Basin

During the early part of the late Albian, central to west-
ern North America (Fig. 3) was covered by an epeiric seaway
that extended from the Gulf of Mexico to the Arctic Ocean,
known as the Joli Fou-Skull Creek Sea (Porter et al. 1998;
Cobban and Reeside 1952). By the latest Albian, a marine re-
gression resulted in the southern margin of the basin mi-
grating northward to Montana, Wyoming, north-central Col-
orado, and the western Dakotas (Roberts and Kirschbaum
1995). During this regression, incised valleys were cut

Fig. 3. Hypothesized paleogeography from Blakey (2014) for
the Western Interior Basin or seaway from Late Albian to
Middle Cenomanian. Source maps © 2014 Colorado Plateau
Geosystems Inc.

into the older units progressively from west to east and
subsequently filled with sinuous bodies of sandstone, such as
occur in the dominantly non-marine Newcastle and Muddy
sandstones. Later, as the Boreal Sea transgressed from west
to east into northwestern Colorado and northeastern Utah,
rocks of the Muddy/Newcastle were overlain by shales, silt-
stones, and bentonites of the Shell Creek and upper Ther-
mopolis formations, which in turn were covered by shales
of the siliceous Mowry Formation, a dominantly anoxic, con-
densed unit containing abundant disarticulated fish bones,
teeth, and scales, as well as numerous bentonite beds
(Walaszczyk and Cobban 2016). These units have equivalents
to the north in Canada, and in both countries the condensed
units holding abundant fish hash were abruptly overlain by
eastward-prograding clastic wedges containing abundant 99–
90 Ma detrital zircons derived from the orogenic hinterland
to the west.

Thermopolis Formation
This succession of rocks, which largely predates rocks we

are interested in, is widely known from Wyoming where it
underlies the Muddy Sandstone and is commonly subdivided
into several informal members (Fig. 4): Rusty beds, “lower”
Thermopolis shale, middle silt, and “upper” Thermopolis
shale. Although rocks of the formation occur in the Black
Hills of South Dakota (Fig. 5), they are only about 5 m thick
and so undivided (Eicher 1958). In the upper Thermopolis
Shale, a bentonite bed collected below the base of the Muddy
Sandstone yielded a 40Ar/39Ar sanidine age of 101.36 ± 0.11
Ma (Singer et al. 2021), which constrains the Muddy Sand-
stone and the Shell Creek Shale to be younger, whereas the
underlying Thermopolis Shale is about 5 million years older
(Fig. 4). In the Big Horn and Powder River basins (Fig. 5), “up-
per” Thermopolis Shale is a black, nearly silt-free shale 20–
35 m thick containing scarce ironstone beds, a couple of ben-
tonites near the top, and in only the Big Horn Basin, radiolar-
ians in its upper layers (Eicher 1958). Some workers include
the Muddy Sandstone and overlying Shell Creek Shale in the
Thermopolis Shale, but as they are demonstrably younger
and represent in part non-marine successions, we treat them
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Fig. 4. Middle Cretaceous stratigraphic chart with 40Ar/39Ar sanadine ages after Singer et al. (2021) and additions in Canada
from sources cited in text. Note the eastward younging of the Muddy and Newcastle sandstones.

as separate units (see also Kirschbaum and Mercier 2013;
Bremer 2016).

Muddy Sandstone
The Muddy Sandstone (Fig. 4) is known from much of

Wyoming, but in the southwest is commonly termed the
Dakota Sandstone. Eicher (1962) originally argued for sep-
aration of the Muddy Sandstone from adjacent units and
for it to be given formational status. As this formation is a
major petroleum reservoir, there is plenty of available data.
Waring (1976) used it to show that in the northeast Powder
River Basin of Wyoming (Fig. 5) and southeastern Montana
the unit represented infilled channels of a dendritic river
system. Whiteford (1962), Dresser (1974), and Curry (1962)
studied rocks of the Muddy Formation in the Wind River
Basin (Fig. 5) and found quartzose and chert-bearing sand-
stone, siltstones, silty shales, carbonaceous sandstones, con-
glomerates, rare bentonite, black and gray shale, and lignitic
shale lying atop the Thermopolis Shale. In places, the Muddy
Sandstone is up to 50 m thick, but more typically ranges
from 3 to 13 m thick, and is overlain disconformably by the

Shell Creek Shale (Curry 1962), which consists of shallow ma-
rine sedimentary rocks (Gustason 1988). Depending on lo-
cation, the basal 1–10 m of the Muddy Sandstone consists
of sandy or silty mudstone, muddy sandstone, lignite, and
scarce bentonites, one of which was dated using 40Ar/39Ar
by Singer et al. (2021) as 101.23 ± 0.09 Ma (Fig. 4). Plant re-
mains such as leaves, amber, fusain, ferns, conifers, and di-
cots are abundant (Curry 1962). The basal succession shoals
upwards to a non-marine sandy shoreline and (or) swampy
section.

The middle sector of the formation comprises local, irregu-
larly distributed bar, channel, and deltaic facies of a distribu-
tary river system, with some trough crossbedded sandstone
filling channels as wide as several kilometers cut 30 m deep
into the finer grained units below (Whiteford 1962). Dresser
(1974) also reported facies diagnostic of a northeast-trending
siliciclastic shoreline. Gustason (1988) documented that the
middle parts of the formation contain foraminifera charac-
teristic of the Miliammina manitobensis zone as do the overly-
ing Shell Creek and Mowry shales, whereas the lower parts
of the formation were more similar to the Skull Creek facies

C
an

. J
. E

ar
th

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
N

at
ur

al
 R

es
ou

rc
es

 C
an

ad
a 

on
 0

2/
08

/2
3

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://dx.doi.org/10.1139/cjes-2022-0089


Canadian Science Publishing

Can. J. Earth Sci. 60: 214–262 (2023) | dx.doi.org/10.1139/cjes-2022-0089 219

Fig. 5. Sketch map of part of western North America after Reed et al. (2005) showing distribution of Cretaceous sedimentary
rocks of the Western Interior Basin and geologic elements discussed in text. Not all geological units are shown.
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Fig. 6. Paleontological zonation of various formations de-
scribed and discussed in text (from Walaszczyk and Cobban
2016).

and contain the late Albian Haplophragmoides gigas biofacies
(Fig. 6).

In the upper part of the unit, lagoonal, shallow marine
sediments buried the sandy channels and covered the shore-
line with shallow-water muds, detrital lignites, paleosols, fine
sands with abundant ripple marks and mud cracks, with thin,
burrowed tidal flat sands, and silts (Dresser 1974). According
to Curry (1962), the uppermost shallow marine facies con-
tains brachiopods.

Dolson et al. (1991) used published subsurface maps, more
than 1000 core descriptions, a 900-well cross-section grid, and
a computerized regional formation-top file of over 30 000
wells to reconstruct the Muddy Sandstone. Their earliest sed-
imentation, sheet sands that migrated westward, are several
million years older than the Muddy and relate to the Kiowa-
Skull Creek Sea (Singer et al. 2021). However, these studies
recognized younger valley fill, alluvial plain channel fill, and
transgressive marine units. They point out that valley inci-
sion and the development of at least 10 different drainage
basins took place during a relative fall in sea level and that
the incised valleys were filled by both fluvial and transgres-
sive marine facies.

Newcastle Sandstone
The Newcastle Sandstone (Fig. 4), partly overlaps in age

with, but is mostly slightly younger than, the Muddy Sand-
stone (Singer et al. 2021). Rocks of the formation are mainly of
fluvial to neritic origin and were largely deposited in incised
paleovalleys cut into Skull Creek Shale and oriented westerly,
northwesterly, and northerly. Throughout its outcrop area of
the western Dakotas, Wyoming, and southeastern Montana,
the formation contains anastomosing sand bodies of a den-
dritic drainage system and generally ranges from 30 to 50 m
thick (Stapp 1967; Finzel 2017). Examination of more than
9000 wireline logs and 23 drill cores over its outcrop area
by LeFever and McCloskey (1995) documented a basal allu-
vial sandstone, incised during a subsequent lowstand, then
overlain and infilled by a package consisting of a westward-
deepening, marginal to offshore transgressive succession of
sandstones, mudstones, and minor coal, similar to units of
the upper Muddy Sandstone to the west. During the eastward-
migrating transgression, the older fluvial and shoreline sys-

tems were reworked and deposited as shallow to marginal
marine deposits. Recent age determinations show rocks of
the formation (Fig. 4) to be Lower Cenomanian with 40Ar/39Ar
sanidine ages of 99.49 ± 0.07 (lower), 99.58 ± 0.12 Ma
(middle), and 99.8 ± 0.4 Ma (upper) for bentonites interca-
lated with sandstone, mudstones, and coal (Singer et al. 2021).
Finzel (2017) reported six detrital zircons with ages ranging
from 103 to 98 Ma, which probably represent zircons from
ash beds eroded and redeposited within the fluvial unit as
the Newcastle Sandstone is confined to the far eastern sector
of the trough.

Shell Creek Shale
The Shell Creek Shale (Fig. 4) is the basal marine shale

unit deposited during the rise and transgression of the Shell
Creek-Mowry Sea (Kirschbaum and Roberts 2005). It was first
given formational status separate from both the overlying
Mowry and underlying Thermopolis Shale by Eicher (1962).
Rocks of the Shell Creek Shale are dominated by fissile, dark-
gray shale and thin bentonite beds that overlie either the
Thermopolis Shale or the Muddy Sandstone in the Green
River and Bighorn basins (Fig. 5), pinch out to the west,
and can be traced intermittently to the Black Hills of South
Dakota (Redden and DeWitt 2008). Locally, a thin, poorly
sorted, granular to pebbly conglomerate and pebbly sand-
stone, containing crocodile and fish teeth, interpreted as
a transgressive lag, occurs on top of the Muddy Sandstone
(Bremer 2016). Curry (1962) pointed out that rocks of the
Muddy Sandstone contained Boreal, but no Tethyan faunas,
implying that the trough was not connected to the Gulf of
Mexico at that time. Singer et al. (2021) dated three ben-
tonite beds using 40Ar/39Ar on sanidine (100.07 ± 0.07 Ma,
99.67 ± 0.13 Ma, and 99.62 ± 0.07 Ma) in the Shell Creek
Shale from outcrops in the Big Horn Basin of Wyoming and
Montana (Figs. 4 and 5). They noted that the 99.62 Ma ben-
tonite in the lower Shell Creek Shale is indistinguishable in
age from the middle Newcastle Sandstone to the east (Fig. 4),
and so their correlation constrains the location of the eastern
shoreface during the Early Cenomanian.

Mowry Shale
The Mowry Shale (Fig. 4) is widespread in Wyoming, south-

ern Montana, northern Utah and Colorado, and in the Black
Hills of western South Dakota. It extends the width of the
trough from the thrust belt, where it is called Aspen Shale,
to the east side of the Black Hills. It was originally described
at the northern end of the Bighorn Mountains of Wyoming
by Darton (1904), who identified abundant fish scales, bones,
and teeth. It was distinguished from shales above and be-
low by its ridge-forming nature, attributed to the presence
of abundant siliceous ash beds or porcellanites (Rubey 1929).
The Mowry Shale overlies a variety of units including black
Thermopolis Shale, Shell Creek Shale, and Muddy Sandstone,
Dakota Formation, and (or) Newcastle Sandstone, depend-
ing on location, and is overlain by the Belle Fourche or
Chalk Creek members of the Frontier Formation (Reeside and
Cobban 1960; Kirschbaum and Roberts 2005; Lichtner et al.
2020).
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In most locations, the Mowry Shale is a dark siliceous shale
with abundant bentonite or porcellanite beds: Reeside and
Cobban (1960) describe a section just under 60 m thick con-
taining 55 bentonite beds with several beds extending for
hundreds of kilometers (Kauffman 1977). Due to its high
silica content, rocks of the formation tend to form ridges
of silvery colored shale. In addition to the volcanic debris,
the unit is rich in disarticulated fish remains, especially
scales and teeth. It thickens westward from 60 to 72 m thick
in the Black Hills, where it contains abundant bentonite
beds (Cobban and Larson 1997) to about 200 m in western
Wyoming. Singer et al. (2021) obtained 40Ar/39Ar sanidine
ages of 98.17 ± 0.11 Ma and 97.52 ± 0.09 Ma for bentonites in
the Mowry Shale of the western Powder River basin (Fig. 4).
Hannon (2020) dated one bentonite from the Mowry Shale
in the Black Hills by U-Pb inductively coupled plasma mass
spectrometry (ICP-MS) on zircon to be 98.3 ± 1.1 Ma (Fig. 4).

Reeside and Cobban (1960) recognized five gastroplitine
ammonite zones in the Mowry Shale of Wyoming, from old-
est to youngest: Neogastroplites haasi, Neogastroplites cornutus,
Neogastroplites muelleri, Neogastroplites americanus, and Neogas-
troplites maclearni (Fig. 6). These species of ammonite were
apparently endemic to the early Cenomanian of the Mowry
Sea (Cobban and Kennedy 1989). In the Black Hills of South
Dakota, Cobban and Larson (1997) documented Neogastroplites
americanus and Metengonoceras aspenanum in the upper part of
the formation.

Within the Wind River Basin of Wyoming, Finn (2021)
included the Shell Creek Shale as the lower member of the
Mowry Shale and constructed isopach maps for the total
thickness, as well as both the upper siliceous member and
the lower Shell Creek Member. All three maps showed thin-
ning to the east-southeast, with the thickness of the Mowry
Shale decreasing from about 190 m thick in the western part
of the basin to about 75 m in the extreme eastern sector of
the basin.

Another succession rich in porcellanite that appears cor-
relative with the Mowry Shale occurs just west of the Boulder
batholith in the Flint Creek basin near Drummond, Montana
(Fig. 5) and southward through the eastern Pioneer Range
(Fig. 5) into the Snowcrest Range, Centennial Mountains,
and Lima Peaks area (Tysdal et al. 1989; Vuke 1984; see also
Hildebrand and Whalen 2021b). In the Madison (Fig. 5) and
Gallatin ranges, 1 km of sedimentary rocks and abundant
intercalated porcellanite beds of the Blackleaf/Mowry forma-
tions lie just east of the Tendoy thrust (Dyman and Nichols
1988; Wallace et al. 1990; Dyman et al. 2000). Detrital zircons
collected from the Vaughn member of the Blackleaf Forma-
tion to the north near Drummond (Fig. 5) yielded a peak of
100 Ma (Stroup et al. (2008). Also, Zartman et al. (1995) dated
three porcellanites from the middle of the Vaughn mem-
ber of the Blackleaf as 97–95 Ma by U-Pb on zircon; whereas
Dyman et al. (2000) used Ar-Ar laser fusion geochronometry
to date a sample from the uppermost Vaughn of the Lima
Peaks area as 99.78 Ma.

Although the above units are superficially similar to strata
of the Blackleaf Formation to the east and northeast in the
Montana Disturbed Belt (Fig. 5), on the basis of the available
radiometric ages, they are several million years younger.

These units, as well as rocks of the Blackleaf Formation to
the east in the Disturbed Belt, were transported on thrust
faults of potentially very different ages and so are difficult to
restore palinspastically.

To the northeast of the Montana Disturbed Belt, Cobban
et al. (1976) correlated rocks of the 100 m thick Bootlegger
Member of the Blackleaf Formation (Fig. 4) with the Mowry
Shale and suggested that it was a near-shore facies. The Boot-
legger Formation consists of very fine interlaminated ma-
rine sandstone, siltstone, shale, bentonite, and pebbly lags of
chert, including an uppermost sandy unit holding chert peb-
bles to 5 cm and abundant fish bones, overlain by the Flow-
eree Member of the Marias River Shale, which contains no
bentonites and only sparse fish debris. The Arrow Creek ben-
tonite (Fig. 4), which occurs in the Shell Creek Shale directly
below the Bootlegger Formation, was recently dated to be
99.12 ± 0.14 Ma (Singer et al. 2021). Arnott (1988) studied the
Bootlegger Formation near Great Falls, Montana, and found
it to contain five stacked successions comprising coarsening
upward cycles grading upwards from low to moderate biotur-
bated offshore shelf mudstone to shoreface sandstone capped
by a transgressive lag deposit of chert pebble conglomerate
sitting on an erosional surface.

Outcrops of Mowry Shale continue to the south into north-
eastern Utah, where they consist of siliceous marine shales
containing abundant disarticulated fish bones, scales, and
shark teeth that overlie a nonmarine section of the Dakota
Formation and underlie the Frontier Formation (Sprinkel et
al. 2012). A U-Pb age from a bentonite in the middle Dakota
Formation beneath the Mowry Shale was dated as 101.4 ± 0.4
Ma (Sprinkel et al. 2012), which constrains the maximum
age of the Mowry Shale in northeastern Utah. Sprinkel (per-
sonal communication, 2022) now considers the Dakota there
as Muddy Sandstone, with the dated bentonite just beneath
it in Thermopolis Shale, consistent with the work of Singer
et al. (2021) farther north (Fig. 4).

Anderson and Kowallis (2005) also examined a section of
Mowry Shale in extreme northeastern Utah, but near its
southwestern extent, and concluded that, although fish fossil
debris occurs throughout the unit, they are particularly con-
centrated on bedding planes as a result of material trapped
in bottom scours by storm currents on a gently sloping shelf
starved of coarse sediment.

In a study of the paleoenvironments of the Mowry Shale,
Byers and Larson (1979) used bentonite datum planes to
demonstrate an eastward progradation of the shoreline over
an east-dipping paleoslope, which they estimated at 0◦0.3′.
In their study, they found that the Mowry/Frontier contact is
isochronous, but that Mowry facies are oblique to the con-
tact with lower Mowry mudstones characterized as anoxic
and lethal, with facies becoming richer in oxygen upwards,
in what is overall a time transgressive succession from west
to east, They found, as did others, that the thickest sections
occurred in the thrust belt to the west. We turn now to some
of those equivalent units.

Aspen and Sage Junction formations
The Aspen Shale and Sage Junction Formation are strati-

graphic equivalents to the Mowry Shale that are exposed
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Fig. 7. Wide-angle view looking north at an easterly dipping section of Frontier Formation near Willow Creek, Powder River
Basin of Wyoming showing Mowry Shale with white bentonite on the left overlain by sandstones and shales of the Frontier
Formation capped by Turonian sandstone of the Wall Creek Member (Zupanic 2017) along the ridgeline. The labeled bentonite
occurs between the Mowry and Frontier formations and, although not dated at this locale, is likely the same as that dated as
97.52 ± 0.09 Ma by Singer et al. (2021).

in relatively thick sections in the fold-thrust belt of the
Wyoming salient to the west (location AT on Fig. 5). In south-
westernmost Wyoming and eastern Idaho, the Aspen Shale,
which ranges in thickness from 200 to 600 m, is consid-
ered correlative with the Mowry Shale, and comprises shales
containing Neogastroplites cornutus and N. americanus, abun-
dant fish scales and porcellanites; overlies the shallow ma-
rine to nonmarine Bear River Formation, as well as nonma-
rine sandstones and conglomerates of the Kelvin Formation;
and sits beneath the coal-bearing sandstones and shales of
the Frontier Formation (Reeside and Cobban 1960). About
25 miles to the west, they describe a nearly 2 km-thick suc-
cession of sandstones, shales, porcellanites, bentonites, coal
beds, and limestone that suggested to them a more shore-
ward facies of the Aspen Shale. When describing the two for-
mations, Reeside and Cobban (1960, p. 11) wrote that “the
conspicuous rocks of both the Mowry and Aspen shales are
so similar to each other and so different from other rocks
in the Cretaceous sequence that it is difficult not to believe
them the product of one series of events”.

West of the Green River basin in Wyoming, the Aspen
Shale is exposed in the footwall successions below the much
younger Absaroka thrust (Fig. 5), where it was described by
M’Gonigle and Dover (1992) to consist of 245–370 m of dark
and light-silvery weathering marine shale, siltstone, siliceous
sandstone, and ridge-forming porcellanites. They reported
that the unit contains abundant fish scales. A tuff in the
Aspen Shale produced a U-Pb tuffzirc age of 98.8 ± 0.4 Ma
(Gentry et al. 2018). Rocks of the formation are overlain by
300–430 m of largely non-marine shale, bentonitic shale,
tuff, sandstone carbonaceous shale, coal, and planar to cross-
bedded sandstone of the Chalk Creek Member of the Frontier
Formation (M’Gonigle and Dover 1992).

The hanging wall of the Absaroka thrust fault (Fig. 5) con-
tains a different, but equivalent, succession of rocks known
as the Wayan and Sage Junction formations (Oriel and Platt
1980; M’Gonigle and Dover 1992). The Wayan Formation,

about 1200 m thick, comprises variegated red, purple, and
gray mudstone, siltstone, and sandstone with minor porcel-
lenite, bentonite, and coal (Oriel and Platt 1980). The Wayan
Formation is, on the basis of fauna, early Cenomanian and
contains the burrowing dinosaur Oryctodromeus as well as
flora similar to the dated flora of the 98 Ma Dakota Sand-
stone near Westwater, Utah (Krumenacker 2010; Barclay et al.
2015). Rubey, who had earlier defined and named the units,
considered the Sage Junction Formation, which comprises
slightly more than 1 km of gray siltstone and mudstone with
sandstone, quartzite, and thin, but common interbeds of por-
cellanite throughout, except in the upper 80 m or so, to be
the most probable equivalent of the Aspen Formation (Rubey
1973), but he wondered if the upper non-porcellanite facies
could be a correlative of the Frontier Formation, as it con-
tained more grit and conglomerate.

Frontier clastic wedge
The Frontier Formation (Fig. 4) of Wyoming, Utah, Mon-

tana, and Colorado is well known from both outcrops and
drill holes in the eastern part of the thrust belt and even
farther east in the Green River, Bighorn, and Powder River
basins (Fig. 5), where it consists of southeastward prograding
marine and non-marine sandstone, siltstone, shale, con-
glomerate, coal, and bentonite (Cobban and Reeside 1952;
Merewether et al. 1984; Merewether and Cobban 1986).
Within the thrust belt, the sections of Frontier are nonma-
rine, up to 2.1 km thick, and were transported eastward on
younger thrust faults (Royse et al. 1975; Dyman and Tysdal
1998).

In the western Powder River basin of central Wyoming,
rocks of the Frontier Formation (Fig. 4) constitute a Cenoma-
nian to Turonian clastic wedge that prograded east and south-
eastward over the Mowry Shale, holding the 98.17 ± 0.11
Ma Clay Spur bentonite (40Ar/39Ar sanidine age; Singer et
al. 2021), and was studied in detail by Bhattacharya and
Willis (2001). In western Wyoming and eastern Utah, thick
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Fig. 8. Relatively immobile elements from 101.5 to 95 Ma
bentonites (Hannon 2020) plotted on Nb vs. Y and Ta vs. Yb
discrimination diagrams of Whalen and Hildebrand (2019) il-
lustrating their probable slab failure origin.

fluvial conglomeratic facies were interpreted to fill incised
valleys, but in the eastern Powder River basin (Fig. 7) several
hundred kilometers to the east, three unconformity-bound
sandstone members are separated by marine shales (Hamlin
1996; Bhattacharya and Willis 2001). Within the basal Belle
Fourche Member, Bhattacharya and Willis (2001) correlated
six, meter-thick, bentonite beds through 50 outcrop sections
and 550 well logs to produce a “grid of isochronous sur-
faces” spanning about 25 000 km2 from which they were
able to demonstrate several coarsening upward cycles grad-
ing from little to moderately bioturbated mudstone to sand-
stone capped by coarse-grained lag deposits sitting on discon-
formities. They used the overall lobate to elongate form of
the sandstone bodies, radiating paleocurrent measurements,
clinoforms, low to moderate shallow marine burrowing, and
top-truncated beds to infer low-stand deltaic environments
fed by river systems to the northwest for each of the main
three bodies studied.

Hutsky et al. (2012) measured 26 outcropping sections of
the Frontier Formation in the northeastern Bighorn Basin.
They found tidal and wave-influenced fluvio-deltaic succes-
sions that prograded southeastward into a shallow marine
environment with low accommodation space and sea-floor
gradient. They also identified six bentonite beds, in addition
to what they called the Clay Spur Bentonite, recently re-dated
using 40Ar/39Ar sanidine to be 98.17 ± 0.11 Ma (Singer et al.
2021) at the base of the formation, in dark-gray laminated
mudstone units, which they correlated through 26 measured
sections. The X-Bentonite, located about 75 m above the base
in their composite section, yielded an age of 95.53 ± 0.09 Ma
(Ogg and Hinnov 2012).

Hannon (2020) collected several bentonites from the Fron-
tier Formation in the Black Hills area and, in addition to dat-
ing them by U-Pb zircon methods, analyzed them for whole
rock geochemistry as well as Sr and Nd isotopes (Hannon et
al. 2019). Discrimination plots using relatively immobile high
field strength trace elements point to a slab failure, not arc,
origin (Fig. 8). Their isotopic results, 87/86Sii = 0.708 and ENdT

ranging from −7 to −9.5. suggest interaction with subcra-
tonic lithospheric mantle as hypothesized by Hildebrand et
al. (2018) for post-collisional magmatism elsewhere. Five of

his dated bentonites were collected from the Belle Fourche
Member of the Frontier Formation, and dated by ICP-MS, with
the Clay Spur at 97.19 ± 0.9 Ma and others at 96.87 ± 0.81 Ma,
96.8 ± 1.1 Ma, 96.5 ± 1.0 Ma, and 96.0 ± 1.3 Ma.

May et al. (2013a, 2013b) collected and studied detrital zir-
cons from the Cenomanian–Coniacian sedimentary units in
the northern Bighorn Basin and found detrital populations
dominated by young peaks that approximate the age of the
units, with the youngest peak ages in the Mowry Shale and
Frontier Formation ranging in age mainly from 99.4 to 96.5
Ma (Fig. 9), which agree with the stratigraphic age, as there
the Lower Mowry contains the ammonite Neogastroplites cor-
nutus, which is considered by Reeside and Cobban (1960) to
be an index fossil for the Mowry Shale. Whereas most, if
not all, zircons within the Mowry Shale were derived from
airfall eruptions into the basin, many of the zircons with
ages <100 Ma in the Frontier clastic wedge were likely de-
rived during uplift and exhumation of the hinterland belt as
Hannon (2020) reported igneous clasts in the Frontier For-
mation. Painter et al. (2014) also examined detrital zircon
suites from the Frontier and younger formations in Wyoming
and found consistent peaks between 100 and 90 Ma in for-
mations younger than the Dakota, whereas older formations
were dominated by detrital zircon populations older than 100
Ma. Because rocks of the Frontier Formation contain abun-
dant zircons derived from rocks <100 Ma (Fig. 9), we consider
the Frontier clastic wedge to represent molasse shed during
exhumation and uplift of the hinterland.

In northern Utah, major exhumation and cooling of the
125–115 Ma Willard-Paris thrust sheets (Fig. 5) also occurred
at 105–95 Ma, which led to increased subsidence to the east
and deposition of the 100–96 Ma Aspen and Frontier forma-
tions in the foreland basin and conglomeratic debris adjacent
to the Paris thrust (Yonkee et al. 2019; Pujols et al. 2020). A
thrust duplex of Paleoproterozoic crystalline rocks, known
as the Farmington complex, seemingly sits on the Archean
basement of the Wyoming——Grouse Creek block (Mueller
et al. 2011; Yonkee et al. 2003). The band of Paleoprotero-
zoic crystalline rocks likely continues northward into Idaho,
where Paleoproterozoic crystalline basement occurs within
the Cabin——Medicine Lake thrust system just east of the Idaho
batholith (Skipp 1987) and the Tendoy thrust (Fig. 5) of south-
western Montana (Skipp and Hait 1977; DuBois 1982).

Farther north in the Montana sector of the thrust belt,
Carrapa et al. (2019) studied exhumation and uplift using low-
temperature thermochronology. Although they were focused
on the geology of the younger Laramide orogeny, their zircon
(U-Th)/He modeling results for several mountainous massifs
in that sector showed that exhumation commenced at 100
Ma (Fig. 10) similar to areas farther south.

Mussentuchit Member and correlative units in
Utah

To the south in central Utah (Fig. 11), the smectite-rich, 25–
40 m thick Mussentuchit Member of the Cedar Mountain For-
mation appears to be bentonite-rich and temporally equiva-
lent to the Mowry Shale, but is non-marine. There, a discon-
tinuous, basal black-chert-pebble lag separates the Mussentu-
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Fig. 9. Detrital zircon data (May et al. 2013a, 2013b) from several units within the Bighorn basin. The Graybull samples are
from the older Aptian–Albian succession and have a strong similarity to samples from the Alleghanian foredeep as shown
(Benyon et al. (2014). The sample from Newcastle Sandstone of the Black Hills is from Finzel (2017) and is similar to the
Alleghanian and Graybull profiles, plus an ∼100 Ma peak that presumably represents airfall reaching this far eastern location.
Samples from the Muddy, Mowry, and Frontier are entirely dissimilar to the Greybull and Newcastle, except for the ∼100
Ma airfall and hinterland detrital peaks, which suggest the difficulty of getting Appalachian Alleghanian detritus across the
eastward-migrating bulge. Plotted with detritalPy (Sharman et al. 2018).
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Fig. 10. Thermochronological models using zircon (U-Th)/He)
from the Helena Salient area (Carrapa et al. 2019), indicat-
ing initial cooling and exhumation of several Precambrian-
cored, mountain blocks starting at 100 Ma. (See Fig. 5 for lo-
cations of uplifted massifs.) Those authors suggest that the
observed cooling/exhumation was tectonically driven as op-
posed to magmatic cooling. (See original work for modeling
techniques and error propagation.)

chit from the underlying Ruby Ranch Member of the Cedar
Mountain Formation, interpreted to represent debris shed
eastward from the ∼120 Ma Sevier orogeny (Lawton et al.
2010; Hunt et al. 2011). Rocks of the Mussentuchit Member
are overlain by shales of the Naturita/Dakota Formation, but
to the east where the Naturita was eroded, rocks of the mem-
ber are overlain by the Tununk Member of the Mancos Shale,
also with a basal pebble lag (Kirkland and Madsen 2007).
The Mussentuchit Member is best known along the western
side of the San Rafael Swell (Figs. 5 and 11) where it overlies
a distinctive cobbly conglomerate up to 5 m thick holding
quartzite clasts (Doelling and Kuehne 2013). The member is
dominated by gray, silty mudstone and muddy siltstone high
in organic carbon from fossil plant material with local beds
of lignite, all deposited on a broad coastal plain (Kirkland et
al. 2016). Tucker et al. (2020) also reported variably preserved
shell hash.

Several bentonites within the Mussentuchit Member on
the San Rafael Swell were dated by 40Ar/39Ar to be 98.2–96.7
Ma, but generally have high analytical errors and do not
match their stratigraphic order (Garrison et al. 2007). For this
reason, we prefer to use the average of four bentonite ages,
likely from the same bed, and with a weighted mean age of
98.39 ± 0.07 Ma (Cifelli et al. 1997) consistent with ages from
the Mowry Shale (Fig. 4). Tucker et al. (2020) collected detrital
zircons from volcaniclastic rocks in the member and argued
that it was deposited no earlier than 96–94 Ma, an interpre-
tation which conflicts with the 40Ar/39Ar sanidine ages from
bentonite beds, and their own age from the lower Mussentu-
chit of 102.1 Ma, as determined by averaging seven different
methods of determining the MDA.

Kirkland et al. (2016, p. 160) point out that dinosaur
eggshells are common in the Mussentuchit Member and that
vertebrate fauna from the member “is the oldest dinosaur
fauna with representatives of each family characteristic of
the remainder of the Late Cretaceous in North America” as
documented by Cifelli et al. (1997). Researchers have recog-
nized at least 22 species of mammals, albanerpetonids, sala-
manders, adocid turtles, the oldest North American snakes,
marsupials, bird teeth, and a wealth of dinosaur teeth rep-
resenting brachiosaurids and a diverse group of meat-eating
dinosaurs, such as velociraptors and North America’s old-
est tyrannosaurids (Cifelli et al. 1997, 1999; Kirkland et al.
1997, 1999, 2016; Kirkland and Madsen 2007). Scientists
also note that several dinosaurs collected from rocks of the
Mussentuchit Member, such as the tyrannosaurids and pachy-
cephalosaurs, as well as other vertebrates such as snakes,
anocid turtles, and the world’s most primitive marsupials,
have Asian affinities and are hypothesized to have immi-
grated to North America over a polar land bridge (Cifelli
et al. 1997; Gardner and Cifelli 1999; Kirkland et al. 2016;
Avrahami et al. 2018). Their arrival may have led to extinction
of native North American dinosaur clades, such as Sauropods,
which went extinct at about the same time (Kirkland et al.
1997, 1999). Cifelli et al. (1997) suggested that perhaps the ac-
cretion of Wrangellia to southern Alaska might have brought
the Asian family groups to North America at ∼100 Ma.

Other formations of the same age within the basin also con-
tain new fauna. The first discovery of both trace and body
fossils of a burrowing and denning dinosaur, Oryctodromeus,
occur in the Blackleaf Formation of Montana (Varricchio et
al. 2007), which also hosts a similar dinosaur fauna as the
Mussentuchit Member (Ullmann et al. 2012).

Mid-Cretaceous thrust-related stratigraphy of
southwest Utah, Nevada, and California

To the west of the San Rafael swell, in the Sanpete and
San Pitch mountains (Fig. 11), rocks of the Cedar Mountain
Formation and overlying Indianola Group represent the fore-
deep stratigraphy in the thrust belt of the Pavant Valley, and
Canyon Ranges, where coarse conglomeratic facies, known as
the Canyon Range Conglomerate, overstep the Pavant thrust
(Figs. 5 and 11) and lie unconformably upon the Canyon
Range culmination (Spieker 1946; Sprinkel 1994; Schwans
1995; Sprinkel et al. 1999; Lawton et al. 2007).
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Fig. 11. Stratigraphic units with ages in Ma for some lower to mid-Cretaceous stratigraphic successions in Utah and southern
Nevada. Data from sources cited in text. MDA–maximum depositional age from detrital zircons; Fm——formation. Broad gray
line is approximate location of cratonic hingeline. Thrust symbols provide approximate locations of important thrust faults
mentioned in text with ages in Ma.

The Pavant thrust fault and Canyon Range culmination
are one segment of the mid-Cretaceous thrust belt of the US
Cordillera (Sevier of Armstrong 1968). It occurs in central
Utah as well as western Wyoming where it is known as
the Wyoming salient (Fig. 5). Thrust faults of the Pavant–
Charleston–Nebo thrust system transported Neoproterozoic
metasedimentary rocks, Paleoproterozoic crystalline base-

ment of the Santaquin complex (Nelson et al. 2002), and a
Phanerozoic sedimentary succession, eastward, and led to
the development of a large nearly recumbent anticline. The
Pavant sector of the thrust system deformed and elevated the
Canyon Range thrust into an antiformal culmination during
its emplacement (DeCelles and Coogan 2006). Early work by
Christiansen (1952) and more recent work by Lawton et al.
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(2007) demonstrated that the Canyon Range Conglomerate
was deposited atop the Pavant thrust after thrusting contem-
poraneously with exhumation. Zircon (U/Th)/He ages from
the Pavant–Nebo thrust sheets document exhumation and
uplift of the thrust sheets between 102 and 96 Ma (Pujols et
al. 2020). Using detrital zircon (U/Th)/He ages, they also found
that the exhumation was concurrent with sediment disper-
sal eastward into the Cenomanian Dakota Formation, the
temporally equivalent foredeep stratigraphic unit. Thus, the
Pavant–Charleston–Nebo thrust system was active at about
∼100 Ma and the Canyon Range Conglomerate is best inter-
preted as post-thrusting molasse.

Farther south in Utah, around and in Zion National Park
(Fig. 11), a conglomeratic unit and an overlying smectitic
mudstone unit were assigned to the Cedar Mountain Forma-
tion by Biek and Hylland (2007) and Hylland (2010). They ob-
tained a single crystal 40Ar/39Ar sanidine age of 97.9 ± 0.5 Ma
from an ash bed in the mudstone member, so correlated it
with the Mussentuchit Member of the Cedar Mountain For-
mation of the western San Rafael Swell.

To the west, rocks related to the mid-Cretaceous thrust
belt of the US Cordillera (Armstrong 1968), are known in the
Cenomanian–Turonian Iron Springs Formation (Figs. 5 and
11), which consists of 800–1000 m of nonmarine conglom-
erate, sandstone, debris-flow breccia, mudstone, and lime-
stone, with minor bentonite beds deposited on a fluvial N-NE
sloping braidplain (Fillmore 1991). Zircons from a dacitic tuff
intercalated with coarse talus breccias, conglomerates, and
sandstones of the formation were recently dated by both laser
ablation-inductively coupled plasma-mass spectrometry and
chemical abrasion-thermal ionization mass spectrometry to
be 100.18 ± 0.04 Ma (Quick et al. 2020).

In the Muddy Mountains east and northeast of Las Vegas
(Fig. 11), Bohannon (1983) mapped and described rocks of
the Willow Tank Formation and the White Member of Base-
line Sandstone (Fig. 5), which he argued were both deposited
during thrusting and overlain by the Red Member and Over-
ton Conglomerate Member of the Baseline Sandstone. He re-
ported that swamp and lake deposits of the Willow Tank For-
mation lie upon a gravel-covered unconformity on the Aztec
Sandstone with up to 10 m of paleotopography on the basal
contact (Reese 1989), and that the non-marine shallow-water
deposits pass upwards into fluvial quartz arenite, minor con-
glomerate, and local talus breccias, which are tectonically
overlain by the Summit-Willow Tank thrust in the southern
part of the North Muddy Mountains. To the south, in the Val-
ley of Fire, the Red Member and Overton Conglomerate in-
terfinger and overstep the Summit-Willow Tank thrust fault.
Bohannon (1983) also reported that the Muddy Mountain
thrust, located west of the Summit-Willow Tank thrust, over-
rode at least part of the Overton Conglomerate. Carpenter
(1989) documented a reverse clast stratigraphy within the
Red and Overton Conglomerate members and noted that car-
bonate blocks up to 20 m within the Overton Member indi-
cate deposition on alluvial fans close to the thrust front.

Bonde (2008) and Bonde et al. (2008, 2012) reported exten-
sively on the fauna preserved within the Willow Tank Forma-
tion and noted the presence of tyrannosaurids, iguanodonts,
turtles, and fossil dinosaur eggshells. Those fauna closely

match fauna of the Mussentuchit Member of the Cedar Moun-
tain Formation in central Utah, whereas fauna from the Ap-
tian Newark Canyon Formation farther north in the Central
Nevada thrust belt (Di Fiori et al. 2020) are closely allied with
those of the Ruby Ranch Member of the Cedar Mountain For-
mation (Bonde et al. 2015), which support the concept of
an Asian faunal influx into North America at about 100 Ma
(Cifelli et al. (1997).

Decades ago, two K/Ar ages were determined on biotite
from tuff beds in the Willow Tank Formation and yielded
98.6 and 98.4 Ma (Fleck 1970); whereas K/Ar analyses from
biotite in the Baseline Sandstone produced ages of 95.8
and 93.1 Ma. More recently, Troyer et al. (2006) dated zir-
cons from three ash beds of the Willow Tank Formation
by SHRIMP RG U-Pb to be 101.6 ± 1 Ma to 99.9 ± 2 Ma;
whereas Pape et al. (2011) reported that sanidine crystals col-
lected from epiclastic units near the base and top of the Wil-
low Tank Formation produced ages of 98.68 and 98.56 Ma,
respectively.

On the western flank of Las Vegas valley, a conglomer-
ate unit within Brownstone Basin (Fig. 5) sits structurally
beneath the Red Spring thrust and contains cobbles and
pebbles apparently derived from the Wheeler Pass thrust
plate to the west (Axen 1987), as well as detrital zircons as
young as 103–102 Ma (Wells 2016). Rocks within the Wheeler
Pass thrust sheet itself, where exposed in the Spring Moun-
tains (Fig. 5), contain evidence for exhumation during the
Late Jurassic (Giallorenzo 2013), which perhaps reflects the
Nevadan event; however, zircon (U–Th)/He thermochronol-
ogy from the thrust sheet, where exposed in the Nopah Range
to the southwest, shows that exhumation started there at
∼100 Ma (Giallorenzo 2013).

In the southern Spring Mountains just southwest of Las
Vegas (Page et al. 2005), non-marine sedimentary and vol-
caniclastic rocks of the Lavinia Wash sequence (Fig. 5), in-
terpreted as synorogenic deposits by Carr (1980), lie struc-
turally below the Contact thrust plate. A rhyolitic boulder
in conglomerate of the Lavinia Wash sequence was dated
at 98.0 Ma, and plagioclase from an ignimbrite in the se-
quence yielded a 40Ar/39Ar age of 99.0 ± 0.4 Ma (Fleck and
Carr 1990).

In the Mescal Range to the southwest, a succession of
100.5 ± 2 Ma basaltic lavas and epiclastic rocks overlain
by plagioclase porphyritic ignimbrites and lavas known as
the Delfonte volcanics was detached, folded, and transported
eastward on thrust faults (Fleck et al. 1994; Walker et al. 1995)
prior to the emplacement of the 98–90 Ma Teutonia batholith
(Fig. 5).

The thrust belt continues southward into the New York
Mountains of California (Burchfiel and Davis 1977). There,
highly strained metavolcanic rocks range in age from 98.4
to 97.6 Ma, whereas associated metasedimentary rocks of
Sagamore Canyon (Fig. 5) have MDAs of 98 Ma (Wells
2016). The age of thrusting is constrained because the
faults deform the volcanic rocks, but are cut by 90.4 ± 0.8
Ma Mid Hills monzogranite, which is one of several plu-
tons of the 98–90 Ma Teutonia batholith (Beckerman et
al. 1982; Miller et al. 2007; Haxel and Miller 2007; Wells
2016).
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Sevier Foredeep in Canada
In the Canadian Cordillera, the Cretaceous of the West-

ern Interior Basin contains Aptian to Albian clastic wedges
equivalent to those in the western United States, and they are
interpreted as a foredeep succession related to the Se-
vier orogeny, which started at 124–120 Ma (Currie 2002;
Hildebrand 2013, 2014). These rocks, which sit uncon-
formably upon Jurassic rocks, commonly have a basal con-
glomerate, the Cadomin Formation (Leckie and Cheel 1997;
Leier and Gehrels 2011), much like the Buckhorn, Cloverly,
Lakota, and Kootenai conglomerates, which unconformably
overlie the Jurassic Morrison Formation and lateral equiva-
lents of the US sector (Heller et al. 1986; Heller and Paola
1989). In Utah, the conglomerates are overlain by the dom-
inantly non-marine Cedar Mountain and San Pitch forma-
tions (Lawton et al. 2010; Kirkland et al. 2016). In Canada,
the basal conglomerates and sandstones do not extend as
far east as their US counterparts, but instead were de-
posited by northward flowing rivers between alluvial fans
on the west and escarpments to the east (Hayes et al. 1994).
The clastic units grade upwards into finer-grained fluvial to
marginal-marine, commonly deltaic, sandstones and shales
of the Blairmore Group and farther to the east, north-
ward flowing fluvial systems of the Mannville Group and
restricted-marine Swan River Formation (Cycle 2 of Leckie
and Smith 1992). The top of the succession throughout most
of the basin is marked by an unconformity (Hayes et al.
1994).

Using mismatches in geology and robust paleomagnetism
of Cordilleran rocks, Hildebrand (2013, 2014, 2015) argued
that the western hinterland of the US Sevier belt is now
located within the Canadian Cordillera, where it is known
as the Omineca Belt (Monger et al. 1982). Scads of plutons
(Fig. 5) ranging in age from 118–105 Ma intrude the Omineca
belt (Hart et al. 2004) and are interpreted to represent post-
collisional slab failure plutons emplaced into the upper-plate
hinterland (Hildebrand and Whalen 2017). Middle Albian
clastic rocks in the Canadian foreland contain a significant
108 Ma detrital zircon peak that Ross et al. (2005) suggested
was formed from exhumation and weathering of plutons to
the west. The slightly younger Hulcross Formation (Fig. 12),
dominated by siltstone, shale, and sandstone, contains abun-
dant bentonite and tonstein layers (Gibson 1992) and may
represent extrusive phases of the post-collisional magma-
tism.

Joli Fou Seaway in Canada
Rocks of the successions in the Sevier foredeep in Canada

are unconformably overlain by rocks of the Fort St. John
and Colorado groups (Fig. 12), which Leckie and Smith (1992)
termed Cycle 3. Overall, this succession is dominated by shale
and represents a major transgression that allowed the Boreal
and Tethyan oceans to flood the craton (Fig. 3) and form a
continuous seaway known in Canada as the Joli Fou Sea and
in the United States as the Kiowa-Skull Creek Sea (Leckie and
Reinson 1993). Deposition of mudrocks in the seaway was in-
terrupted by a period of relative drop in sea level within the
basin, which led to the incision of fluvial channels and de-

velopment of swamps and paleosol complexes found in the
upper Boulder Creek Formation, the Paddy Member of the
Peace River Formation, and farther east, the Viking, Bow Is-
land, and Newcastle formations. These fluvial, non-marine
units are in turn overlain by marine shales of the Shaftesbury
and Westgate formations of the Canadian Plains and equiva-
lents in the Foothills of Alberta, British Columbia, and the
Northwest Territories (Fig. 12), which represent a second ma-
jor basin-wide transgression, as once again the seaway grew
to connect the Gulf of Mexico with the Boreal Sea (Leckie and
Smith 1992; Leckie and Reinson 1993; Schröeder-Adams et al.
1996).

One of the major differences between the Canadian and
US sectors of the trough is the much greater amount of lat-
est Cretaceous–early Cenozoic shortening in the fold-thrust
belt of Canada, which has destroyed, or at least masked, the
western part of the basin there as exemplified by the isopach
maps of Leckie et al. (1990, 1994) and Reinson et al. (1994).
Thus, rocks of many formations, such as the Viking and Bow
Island formations, generally considered temporally correla-
tive with the Muddy and Newcastle sandstones of the US sec-
tor, are difficult to directly link with their American counter-
parts, despite overall similarities.

Boulder Creek–Paddy–Viking–Bow Island strata
Deposition of mud within the Joli Fou Seaway was inter-

rupted by a relative drop of sea level, but instead of pro-
gressing from east to west as expected for a westward pa-
leoslope, it appears to have passed from west to east sim-
ilar to the relations documented in the western US where
the more westerly units of the Muddy Sandstone are older
than rocks of the lithologically similar Newcastle Sandstone
located farther east (Fig. 4). We interpret the similarities in
both US and Canadian successions to reflect the passing of a
flexural bulge from west to east across the continental mar-
gin, such that the cratonic margin was uplifted, eroded, and
locally incised, then pulled down below sea level again as
it rode along the relatively starved outer slope towards the
trench.

Although geochronology is sparse and proposed lithologic
correlations require thorough testing, the Viking Forma-
tion appears to be correlative with the Muddy Formation
of Wyoming. In Canada, a number of formations also ap-
pear more or less correlative, although not all workers agree
(Reinson et al. 1994). According to their analysis, the Viking
Formation, the Bow Island, the Paddy Member of the Peace
River Formation, the Walton Creek Member of the Boulder
Creek Formation, the Newcastle Sandstone of Manitoba, and
the Crowsnest volcanics (Fig. 12) are all considered to be more
or less broadly correlative, except that the volcanics occur
above, rather than below, the sequence boundary common
to the other units. More recent work, summarized by Roca et
al. (2008), divided rocks of the late Albian–early Cenomanian
into alloformations on the basis of regional unconformities
as well as transgressive surfaces and found a southeastward
spatial and temporal migration of uplift and erosion followed
by subsidence and sedimentation, represented by the Wal-
ton Creek and Paddy successions in the west to the Joli Fou
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Fig. 12. Stratigraphic correlation diagram for the relevant part of the Western Interior Basin in Canada. Largely from Bloch
et al. (1993, 1999) and Schröder-Adams et al. (1996) with modifications from Stott (1982), Leckie et al. (1989), and Leckie and
Reinson (1993).

Formation and to the Viking Formation in the southeast (see
their Fig. 28).

The initial drying of the trough seems to have started in the
west with the upwards passage of the lower Boulder Creek
rocks, which were dominated by marginal marine shoreface
to foreshore sandstone and conglomerate, into strata of the
mainly non-marine Walton Creek Member (Fig. 12), which
contains channelized fluvial conglomerates and sandstones,
coal seams, and abundant paleosols, including silica-rich
forms known as ganisters (Leckie et al. 1989; Gibson 1992).

In northwestern Alberta and northeastern British
Columbia, the Paddy Member of the Peace River Formation
(Fig. 12) correlates with the Boulder Creek Formation and
occurs in the area of the Peace River Arch, which subsided
during the Albian (Leckie et al. 1990; Reinson et al. 1994; Roca
et al. 2008; Plint et al. 2018). The eastward-thinning Paddy
Member is lithologically variable and comprises a variety of
fluvial channel, coastal plain, estuarine, and barrier island
facies, that unconformably overlie and fill channels incised

into the Caddie Member of the Peace River Formation and are
overlain by marine mudstone of the Shaftesbury Formation,
which contains the well-known Mowry equivalent Fish Scales
unit (Fig. 12). Leckie et al. (1990), used data from 4500 wire
logs plus 60 drill cores and local outcrops, to suggest that
much of the Paddy Member consisted of debris deposited
in a single broad shallow valley, tens of kilometers wide
and hundreds long cut into previously deposited sediments.
They also suggested that the incision of channels in the
Paddy Member coincided with development of a paleosol
complex in the Walton Creek Member in the Foothills at
Monkman Pass (Fig. 5). To the north, the depositional edge
of the Paddy Member occurs along a northeast trending
line, which marks the northern limit of a sandy barrier
island complex at least 350 km long and a northward facies
change to interbedded marine siliciclastic rocks (Leckie et
al. 1990; Plint et al. 2018). Other studies (Leckie and Singh
1991; Leckie and Reinson 1993) found that the top of the
underlying Cadotte Member was incised by paleovalleys up

C
an

. J
. E

ar
th

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
N

at
ur

al
 R

es
ou

rc
es

 C
an

ad
a 

on
 0

2/
08

/2
3

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://dx.doi.org/10.1139/cjes-2022-0089


Canadian Science Publishing

230 Can. J. Earth Sci. 60: 214–262 (2023) | dx.doi.org/10.1139/cjes-2022-0089

to 15 m deep, then onlapped and filled with rocks of the
Paddy Member. A sample stratigraphic section is shown in
Fig. 13 and described in detail by Leckie and Singh (1991).
The section shares many similarities with those of the Muddy
and Newcastle in the western United States, as well as the
Bow River and Viking in Canada.

More recently, Plint et al. (2018) divided the Paddy Member
into nine allomembers on the basis of flooding surfaces, and
when traced to the west into alluvial facies, the surfaces seem
to coincide with the base of alluvial or lacustrine mudstones
that cap paleosol horizons, or with conglomerate and pebbly
sandstone units that fill paleovalleys. The basal six allomem-
bers are wedge shaped and onlap progressively eastward
onto the eroded substrate, which formed a broad subaerial
ridge that they suggest has characteristics of a forebulge,
whereas three younger allomembers are sheetlike bodies that
do not onlap, show little variation in thickness over ∼300 km,
blanket the ridge, and merge eastward and southeastward
with deltaic rocks of the marine Pelican/Viking formations
(Plint et al. 2018). A multigrain U-Pb discordia from zir-
cons in a thin tuff layer in the Hulcross Formation,
which lies beneath the Boulder Creek Formation (Fig. 12),
gave an age of about 102.5 ± 2.5 Ma (Yanagi et al.
1988).

The uppermost Albian Viking Formation (Fig. 12) is a shale-
encased sandstone unit that occurs in south-central Alberta
and Saskatchewan and is correlated with the Bow Island For-
mation of southwestern Alberta, the Newcastle Sandstone in
Manitoba, and parts of the Peace River Formation in north-
western Alberta (Stelck and Koke 1987; Leckie et al. 1994).
The formation is 15–35 m thick over most of the Alberta
plains, but it is thicker in southern Alberta where it merges
with rocks of the Bow Island Formation. It overlies the shales
of the Joli Fou Formation, in places gradationally, but in
others, especially to the west and northwest, as well as in
Saskatchewan, unconformably (Leckie et al. 1994). The for-
mation is capped by conglomerate of a transgressive pebbly
lag, which in turn, is overlain by black mudstones with thin
lenses of very fine-grained sandstone of the Westgate Forma-
tion.

On the basis of more than 500 well logs and 153 cores,
Boreen and Walker (1991) divided the rocks of the Viking For-
mation of the Alberta plains into five allomembers separated
by four bounding discontinuities. Rocks of the Viking Forma-
tion sit disconformably on a pebbly lag atop Joli Fou shales,
and the oldest two allomembers are composed of sheet-like,
marine, upward-coarsening sequences of bioturbated mud-
stones and sandstones with several intercalated bentonites,
all deposited beneath fairweather wave base (Drljepan 2018;
Boreen and Walker 1991). A relative drop in sea level al-
lowed non-marine rivers to cut channels 11–33 m deep in
the older rocks during a lowstand in the middle of Viking de-
position (Reinson et al. 1994). The channels are reminiscent
of the incised valley systems cut during Muddy-Newcastle
time in the western United States and, like those channels,
were filled with finer grained, marginal marine sediments
during the subsequent transgression. K-Ar dating of sanidine
and biotite from bentonites collected from drill core in the
Viking Formation east of Calgary (Tizzard and Lerbekmo

1975) yielded ages ranging from 105 to 94 Ma, but one 30 cm
bed is widely traceable and interpreted to be about 100 Ma.

The stratigraphic equivalent to the Viking Formation in
the southwestern Alberta Plains is known as the Bow Is-
land Formation (Fig. 12), which Vorobieva (2000) divided
into three informal members with the upper member as-
signed to the Miliammina manitobensis Zone with lesser fauna
of the Haplophragmoides gigas Zone (Fig. 6), similar to shales
above the Viking Formation (Tizzard and Lerbekmo 1975),
the Paddy Member (Stelck and Leckie 1990), the Shell Creek
Shale of the western United States (Eicher 1962), and more
northerly locations, such as Sikanni Sandstone of northwest-
ern British Columbia (Stelck 1975), and the Arctic Red For-
mation of the Peel Plateau (Thomson et al. 2011). Langenberg
et al. (2000) reported the Bow Island Formation as domi-
nantly marine, comprising immature sandstones, bentonite
beds, and chert-pebble conglomerates, some amalgamated to
25 m thick, with the middle Bow Island Formation contain-
ing well-developed paleosols representing subaerial exposure
as recorded in the middle of the Viking. They also reported
that the rocks of the Bow Island Formation interfinger with
rocks of the Bruin Creek Member of the Mill Creek Forma-
tion, which in turn are intercalated with volcanics of the
Crowsnest Formation in the fold-thrust belt (Fig. 12).

Crowsnest Formation
Westward into the Foothills from the Alberta Plains, the

typical upper Albian to lower Cenomanian marine and non-
marine units of the trough are generally represented in
the fold-thrust belt of the southern Canadian Rockies by
volcaniclastic to epiclastic strata of the Crowsnest Formation.
Rocks of this formation commonly sit on, and interfinger
with, a conspicuous conglomerate at the top of the Bruin
Creek Member of the Mill Creek Formation (Blairmore Group;
Fig. 12) and comprise up to 488 m of volcaniclastic and epi-
clastic sandstone consisting largely of sanidine, melanite gar-
net, and clinopyroxene crystal fragments, as well as conglom-
erate, breccia, and debris flows containing igneous clasts,
some to 10 m in diameter (Peterson et al. 1997; Leckie and
Burden 2001).

Rocks of the Bruin Creek Member overlie strata of the
Blairmore Group in sharp, irregular basal contact with over-
lying westerly derived, coarse-grained, trough cross-bedded
sandstone and (or) a laterally discontinuous volcanic-clast
conglomerate (McDougall-Segur horizon) in beds 30 m thick
and 3 km wide that Leckie and Burden (2001) considered
to be lateral equivalents of the Crowsnest Formation. The
volcanic clast conglomerates, locally auriferous (Leckie and
Craw 1995), contain a variety of plutonic and volcanic clasts,
dated by K-Ar to range from 173 to 113 Ma, with fewer chert
and quartzite clasts (Norris et al. 1965). Leckie and Burden
(2001) also report that the upper contact of the Crowsnest
Formation is sharp with up to 37 m of relief beneath either
1–2.5 m of fine-grained sandstone or, more typically, black
marine shale of the Blackstone Formation (Fig. 12).

Although Norris et al. (1965) considered many of the ex-
posures of the Crowsnest Formation to contain primary vol-
canic rocks, Peterson et al. (1997) interpreted most of the
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Fig. 13. Composite section illustrating relations of the Paddy Member of the Peace River Formation and its interpretation
(modified from Leckie and Singh 1991). Note the emergent nature that led to the deposition and incision of the Cadotte
Formation followed by the resubmergence and filling of the incised channels by estuarine and shallow marine sediments. The
Walton Creek, Viking, and Bow Island formations in Canada, as well as the Muddy and Newcastle sandstones in the United
States, have similar stratigraphic units and relations.

rocks to be epiclastic. They reported that some plane-bedded
sandstones comprise grains of sanidine, garnet, and clinopy-
roxene, but that definitive evidence for a primary pyroclas-
tic origin is lacking. A more recent study (Adair and Bur-
wash 1996) used evidence such as plastically deformed vol-
canic fragments, charred wood, bedforms, and baked mar-
gins of clasts to indicate that many of the rocks in the
formation were primary volcanic rocks, which originated as
pyroclastic flows from collapsing eruption columns. Regard-
less of their origin, angular blocks and fragments include por-
phyritic analcime phonolites, analcite phonolite, trachyan-
desite, and trachyte (Peterson et al. 1997).

The age of the Crowsnest Formation has generally been
considered to be close to 100 Ma on the basis of the paleontol-

ogy above and below the formation, as well as a single sani-
dine 40Ar/39Ar age of 102 ± 0.5 Ma generated by Obradovich
and reported in Leckie and Burden (2001), who found poorly
preserved palynomorphs that they considered to possibly
be Cenomanian. More recently, Pana et al. (2018b) ana-
lyzed U-Pb isotopes from melanite garnet xenocrysts in the
lower Crowsnest Formation using isotope dilution–thermal
ionization mass spectrometry, then averaged two analyses for
a final result of 102.9 ± 1.1 Ma. They also dated titanite (U-Pb)
from an alkaline sill also within the thrust belt, but located a
few kilometers to the west and produced a crystallization age
of 102.4 ± 0.5 Ma, within error of the age obtained from the
xenocrystic melanite garnets in the Crowsnest Formation.
Adair (1986, p. 141) noted that “melanite garnets identical
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Fig. 14. Trace element discrimination plots (Hildebrand and Whalen 2017; Whalen and Hildebrand 2019) illustrating that
rocks of the alkaline Crowsnest volcanics (Bowerman et al. 2006) plot in the slab failure fields as do 101.5–95 Ma bentonites
from Wyoming (Bremer 2016), andesite clasts from the Frontier Formation of north-central Wyoming (Khandaker 1991), and
for comparison, analyses from 8.5 to 0.2 Ma post-collisional magmatic rocks (55%–70% SiO2) of Tuscany Province, Italy (from
Peccerillo 2005), and late- to post-kinematic alkaline plutons of the Paleozoic Scandian orogeny in the Scottish Northern
Highlands terrane (from Archibald et al. 2022).

to those of the Crowsnest Formation are found consistently
in the fine-grained sands and shales of the Viking Formation
from the oil fields northwest of Calgary”, which as discussed
earlier, are interpreted to interfinger with rocks of the basal
Crowsnest Formation. Ross et al. (2005) dated detrital zircons
from the Bruin Creek Member and found nine zircons with
ages between 107 and 102 Ma.

Geochemically, the rocks are high-K alkaline, do not con-
tain normative nepheline or quartz, are depleted in high-
field strength elements, lack Eu anomalies, are enriched in

light rare earth elements and have flat heavy rare earth el-
ement profiles (Peterson et al. 1997; Bowerman et al. 2006).
Initial 87Sr/86Sr values range from 0.704 to 0.706, and eNdT

ranges from −7 to −16 (Bowerman et al. 2006). We plot-
ted geochemical data from the Crowsnest Formation on
our discrimination diagrams, and most samples plot in the
slab failure field (Fig. 14). The elevated initial 87Sr/86Sr and
negative eNdT values suggest interaction with subcratonic
lithospheric mantle, not asthenosphere (Hildebrand et al.
2018).
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Fig. 15. Sketch map showing the known localities of the en-
demic ammonite Neogastroplites spp. in the foothills belt of
the Canadian Rockies and the Liard Plateau region (from Stott
1982). mp–Monkman Pass.

Fig. 16. Close-up view of block from Fish Scales Marker Bed
exposed along Petitot River (Fig. 15) showing abundant fish
scales on bedding surface. Rock hammer for scale.

Shaftesbury Formation and Fish Scales Marker
Bed

The Fish Scale Marker Bed of the Shaftesbury Formation
is widely recognized throughout the Western Interior Basin
in Canada (Fig. 12). On the basis of lithology and the oc-
currence of Neogastroplites spp., most researchers correlate it
with the Mowry Shale. The unit is typically radioactive and
has the hallmarks of a condensed section (Leckie et al. 1992;
Schröeder-Adams et al. 1996; Roca et al. 2008). Near Peace
River, Alberta (Figs. 5 and 15), where it is well exposed in out-
crop, Leckie et al. (1992) recognized three units within the
Shaftesbury Formation: (1) a 13 m basal bioturbated shale
unit devoid of fish remains, but with abundant foraminifera
and dinoflagellates representing pelagic sedimentation in an
offshore marine setting with a well-oxygenated water col-
umn; (2) a 1.5 m section of conglomerate, sandstone, silt-
stone, black shale, and bentonite holding abundant fish re-
mains, sparse dinoflagellates, but no benthic foraminifera;
and (3) an upper shale unit, 11 m thick, with some fish re-
mains, minor foraminifera but only at the top, and moderate
quantities of dinoflagellates.

The thin middle part of the formation represents the Fish
Scale Marker Bed and according to Leckie et al. (1992), from
which this section is adapted, is composite, with four dis-
tinct subdivisions. The lowermost 30 cm is in sharp con-
tact with underlying shales and comprises finely interbedded
non-burrowed shale, lenticular-graded or parallel-laminated
siltstone, and very fine ripple-laminated lenses of sandstone
with abundant fish scales, teeth, and probable coprolites,
mostly within coarse siltstone and sandstone laminae. This
unit is interpreted to represent distal storm deposits or den-
sity flows starved of sand, which apparently also carried some
of the fish bones into the area. The fine laminations indi-
cate no bioturbation and anoxic bottom conditions. This unit
is overlain by 8 cm of phosphatic, fish-hash conglomerate
containing fragments of scales and teeth to 1 cm (Fig. 16),
scarce vertebrae of marine reptiles to 5 cm, and a conspicu-
ous scarcity of extra-formational clasts. Leckie et al. (1992) in-
terpret this unit as a lag deposit separating shallow water sed-
iments below from deeper water deposits above (see Fig. 13).

Overlying the fish-hash conglomerate is just over 1 m of
black shale holding abundant fish remains and a 20 cm ben-
tonite bed. Tiny wisps of coarse siltstone and fine sandstone
are interbedded with the shale, and the unit is not biotur-
bated. Fish debris, including scales, teeth, and their aggre-
gates, likely coprolites, are concentrated in the silty and
sandy laminae. The upper unit comprises 11 m of blocky
weathering shale with only faint laminations and no biotur-
bation. Progressively decreasing amounts of fish debris up-
wards through the section suggested to Leckie et al. (1992)
that the upper shale might represent an increase in a rate
of sedimentation and so represent a progradational event,
which was confirmed by overlying clinoforms that downlap
onto the Fish Scale Marker Bed as shown in regional wire-
line cross sections (Bhattacharya 1994; Plint 2000; Plint et al.
2009).

In the Foothills of Alberta, the Hasler, Goodrich, and
Cruiser formations are the equivalents of the Shaftesbury
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Fig. 17. Outcrop in bank along Petitot River (Fig. 15) showing Fish Scales marker unit in the Sully Formation. The Fish Scales
unit marks the transition from east-derived sediment below to west-derived sediment above. The Sully Formation is a strati-
graphic equivalent of the Shaftesbury Formation in northwestern British Columbia and southwestern Northwest Territories
(Stott 1982).

Formation (Fig. 12), whereas in the subsurface of the plains
the muddy to silty Westgate Formation is correlative with
the lower Shaftesbury (Bloch et al. 1993, 1999). In north-
eastern British Columbia and the southwesternmost corner
of the Northwest Territories, the Lepine, Sikanni, and Sully
formations are the correlative units (Fig. 17). Stott (1982), in
his extensive overview of the stratigraphy of the Fort St. John
Group in the Foothills of British Columbia and the north-
western Plains, compiled and reported many occurrences
of Neogastroplites in the Shaftesbury Formation and all its
equivalents in British Columbia and the Northwest Territo-
ries (Fig. 15). The ammonites undoubtably occurred in the
basin to the east, but as the data come dominantly from drill
holes there, they are not recognized. All of these correlative
formations lie at least in part within the Miliammina manito-
bensis foraminiferal zone (Fig. 6).

The Fish Scales marker occurs in the central Foothills
within the Cruiser Formation (Fig. 9), comprising ∼300 m of
thinly bedded and non-bioturbated marine shale, siltstone,
and bentonite with sandy beds containing abundant fish
scales near its base (Stelck 1962). He recorded the ammonites,
Neogastroplites americanus and Neogastroplites mclearni, from the
fish scale units and noted the correlation with the Mowry
Shale. A second Fish Scale horizon occurs about 68 m higher
in the section and thin bentonite beds about 15–20 cm thick
increase in number throughout the upper portion of the for-
mation (Stelck 1962).

In northeastern British Columbia and in the Liard River
area of the Northwest Territories, Stott (1982) documented
the occurrence of the Fish Scales unit in the Sully Formation
(Fig. 12), which is a dark gray to black marine shale, 100–
200 m thick, that is from west to east, sits on successively
older sandstones of the Sikanni Formation, which contains
N. cornutus and N. muelleri. Deposition on progressively older
units to the east suggests that the older rocks dipped west-
ward. The Fish Scale unit contains a silty argillaceous mud-
stone with abundant fish scales and bone fragments, along

with associated bentonite beds, overlain by a gradational suc-
cession of sandstone and shale, where the contact is placed
at the lower downlap surface of the overlying Dunvegan For-
mation (Fig. 17).

Dunvegan Formation
Lying stratigraphically above the Shaftesbury, Sully, and

equivalent formations are rocks of the Dunvegan Formation
(Fig. 12). Bhattacharya (1989) collected data from about 500
well logs and 130 cores to create isopach maps and detailed
facies interpretations of the rocks, which form a southeast-
ward prograding clastic wedge atop the Fish Scales Marker
Bed (Bhattacharya and Walker 1991a, 1991b; Plint 2000; Plint
et al. 2009).

The Shaftesbury shale unit above the Fish Scales Marker
Bed is considered by Battacharya (1994) to be the basal unit
of the southeasterly prograding Dunvegan clastic wedge be-
cause the bioturbated and rippled silty mudstones, gen-
erally lacking in fish parts, indicate deposition in brack-
ish, prodeltaic, shallow-water conditions caused by south-
eastward progradation of the deltaic depositional system.
Bhattacharya and Walker (1991a) subdivided the Dunvegan
(Fig. 18) into seven allomembers separated from one an-
other by transgressive, marine flooding surfaces that repre-
sent progradational cycles beginning with basal marine mud-
stones passing upwards through interbedded mudstones, silt-
stones, and sandstones into shallow, marine shoreline sand-
stones topped by non-marine facies such as coals and pale-
osols. The non-marine units thicken to the northwest. The
southern continuation of the Dunvegan is the Blackstone For-
mation (Fig. 12), but most of the unit is truncated or obscured
at the thrust belt to the west, so only the eastern muddy fa-
cies are preserved within the basin as documented by Plint
(2000) and Plint et al. (2009), who, using more than 2300 well
logs and >60 outcrop sections, traced the Fish Scales Mem-
ber over 950 km southeast to the Blackstone Formation. They
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Fig. 18. Regional cross section of Dunvegan Alloformation illustrating its wedge-shaped form and that its various allomembers
(labeled G to C) downlap onto the planar surface of the Fish Scales unit (modified from Bhattacharya 1994). Correlation lines are
interpreted to be chronostratigraphically significant surfaces. Location of section A to B is shown in the inset. Note that in the
north facies trend more or less northerly, but to the south they are truncated by much younger Upper Cretaceous–Paleocene
deformation in the Laramide fold-thrust belt (Fig. 5).

also documented that individual clinoforms of the prodelta
mud-wedge in the Dunvegan Formation range from 80 km
in the lower few allomembers; but progressively in the up-
per section they found progradational distances to be ∼150,
∼220, and ∼250 km, with the upper allomembers, extend-
ing as 10–20 m thick tabular sheets for 400 km for allomem-
ber C and 800 km for allomember A at the Montana bor-
der (Fig. 19). Hay and Plint (2020) showed that the upper
two allomembers of the formation preserved evidence of pro-
gressive drowning and had smaller and more linear delta-
front sandstone bodies upsection, which suggested to them
that more open-marine conditions were established over that
interval.

Far to the east in Manitoba, rocks of the Belle Fourche Mem-
ber of the Ashville Formation (also called Belle Fourche For-
mation), considered correlative with rocks atop the Fish Scale
unit to the west (Fig. 12), are dominantly dark shales lack-
ing in benthic foraminifera (Schröeder-Adams et al. 2001).
They report that basal beds are not bioturbated and con-
tain a 1-cm-thick bed of fish teeth, scales, and other debris,
that coarsens upwards into bioturbated sandstones, shell
beds, and additional bonebeds, some with vertebrate fos-
sils. Apparently, the water column of the basin was strati-
fied, with anoxia reaching into the photic zone as far east
as its exposed margin in southern Canada, and remained
starved for some time after deposition of the Fish Scales
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Fig. 19. Diagram illustrating the geometry and shape of allomembers of the Dunvegan Formation (Plint et al. 2009) on a
line from Fort St. John in the northwest to the US–Canada border in the SE. The top of the condensed Fish Scales unit is a
downlap surface and represents a southeastward surface upon which successive younger clinoforms were deposited farther
to the southeast. Plint et al. (2009) point out that the Fish Scales unit is a basin-wide deposit and marks the shutdown of
deposition in the basin. Vertical exaggeration is about 1600.

horizon, while clastic wedges prograded eastward across the
basin.

Although bentonite beds are directly associated with the
Fish Scales horizon and have been collected for dating, they
remain unpublished; however, Plint (personal communica-
tion, 2021) reported the radiometric age as consistent with
ages determined by Singer et al. (2021) for the Mowry For-
mation. A bentonite bed located to the south within dark
marine mudstone of the Sunkay Member of the Blackstone
Formation (Figs. 4 and 12), which was traced north-
ward 350 km to the upper allomembers of the Dun-
vegan Formation (Tyagi et al. 2007), was dated by U-
Pb on zircon to be 95.87 ± 0.10 Ma (Barker et al.
2011).

Buechmann (2013) studied detrital zircons in units above
and below the Fish Scales Marker Bed (Fig. 20) and dis-
covered a shift in provenance from dominantly Precam-
brian zircons (93%) below the bed in the Viking Forma-
tion to Paleozoic and Cretaceous in the Dunvegan Forma-
tion above the Fish Scale Marker. He interpreted the bulk
of debris within the Viking Formation to have been derived
from sources in the Canadian Shield with lesser quantities
of Paleozoic rocks, perhaps largely cannibalized from in-
cised paleovalleys cut into older rocks by pre-Viking ero-
sion. Detrital zircons from the Dunvegan Formation (Fig. 20)
are dominated by Mesozoic grains (69%) with prominent
age peaks at 100, 101, and 102 Ma, which we infer to
represent detritus shed from the rising hinterland to the
west.

Peel Plateau——Great Bear Plain
Northeast and north of the Mackenzie Mountains, along

the Hume River (Fig. 5) a sedimentary succession, about 2 km
thick, sits unconformably upon a basement of Devonian sedi-
mentary rocks and comprises a basal 20 m thick Albian trans-
gressive sandstone, the Martin House Formation (Fig. 21),
overlain by as many as 1000 m of Albian bioturbated, ma-
rine mudstones of the Arctic Red Formation, which contains
a bentonite dated by U-Pb zircon as 107.0 ± 1.9 Ma (Thomson
et al. 2011). Because strata of the Martin House Formation lie
directly on Paleozoic basement, instead of Lower Cretaceous
sedimentary rocks, field relationships are more straightfor-
ward than farther south.

Hadlari et al. (2014) indicate that the sandstones of the
basal transgressive Martin House Formation are marginal
marine and fine upwards, as well as westward, into off-
shore mudstones of the Arctic Red Formation, which reflect
a westward-deepening basin. The Albian succession is capped
by a pisolitic ironstone facies, holding rare wood fragments,
unconformably overlain by mudstone and bentonite beds of
the Cenomanian Slater River Formation, which is up to 500 m
thick with a base composed of black carbonaceous shale and
rare coal seams overlain by a 10 cm condensed section of non-
bioturbated and radioactive mudstone with fish teeth, bones,
and other organic material, but no foraminifera (Thomson
et al. 2011). Gray mudstones with few foraminifera domi-
nate the remainder of the Slater River Formation, but minor
rippled sandstone beds occur towards the top, and the en-
tire succession grades upwards through a transgressive peb-
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Fig. 20. Detrital zircons of five samples from the Viking and Dunvegan formations collected and analyzed by Buechmann (2013)
replotted as cumulative distribution and KDE (kernel density estimator) plots. The Viking is interpreted to be derived from
the Canadian shield with lesser quantities of recycled zircons from the fold-thrust belt, whereas the zircons in the Dunvegan
Formation were almost exclusively derived from the collisional hinterland to the west as reflected by the 100 Ma peaks. Curve
labeled Great Bear Lake on plot of Viking 2 is from Hadlari et al. (2012) and illustrates zircons in Cambrian strata derived from
the Wopmay orogen just south of Great Bear Lake. Plotted with detritalPy (Sharman et al. 2018).

bly lag into 700 m of siliciclastic parasequences representing
an easterly prograding clastic wedge of the Trevor Formation
(Hadlari et al. 2014).

Ages of detrital zircons (Fig. 21) collected from the basal
Martin House Formation are consistent with an easterly
source in the Orosirian Wopmay orogen, whereas zircons
from the Trevor Formation have a broader age range, sim-
ilar to the Neoproterozoic to Mississippian rocks known
in the Mackenzie Mountains, but also with a prominent,
near-syndepositional peak at 93 Ma, similar in age to post-
deformational plutons of the Selwyn Basin (Mair et al. 2006;
Hadlari et al. 2014; Rasmussen 2013; Hildebrand and Whalen
2017).

Hadlari et al. (2014) interpreted the entire succession
to have been deposited in an easterly migrating foredeep
with the westerly prograding Albian sequence deposited on
the eastern slope of the basin with sediment derived from
the Shield to the east, whereas the Cenomanian section
prograded towards the east and contains debris from the
Mackenzie Mountains thrust belt and post-collisional plutons
of Selwyn Basin (Fig. 22). In a general sense, we agree with
this interpretation, except that we consider that the Albian
section formed part of a Lower Cretaceous passive margin on
the east side of the basin rather than in the younger foredeep
trough. We note that the pisolitic ironstone beds at the top of
the Albian succession are readily interpreted as soil horizons
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Fig. 21. Stratigraphic section at Hume River (HR on Fig. 5) for mid-Cretaceous sedimentary rocks of the Peel Plateau, located
just north of the Mackenzie Mountains showing the age probability curves of detrital zircons from pre-and post-Fish Scales
units (modified from Hadlari et al. 2014). We interpret the Martin House and Arctic Red Formations as part of the west-facing
passive margin of the 140–100 Ma seaway and were derived from the east. As the margin was pulled down into the west-dipping
subduction zone, rocks of the margin were subaerially exposed on the peripheral bulge where a ferruginous paleosol complex
developed. After passing over the bulge the region was resubmerged on the outer slope to the trench where the starved and
anoxic Fish Scales unit of the Slater River Formation was deposited. Rocks of the overlying Trevor Formation were derived
from the west and contain young detritus from post-collisional plutons in the hinterland.

(Thomson et al. 2011) and that the unconformably overlying
strata are recognized throughout the Western Interior Basin,
where, as we have seen, they are known as the “fish debris
marker” (Thomson et al. 2011), or Fish Scales Formation.

Whereas in a foredeep scenario, the easterly progradation
of thrusts should result in a progressively deepening flexu-
ral basin to the east, the opposite occurred as the margin
was uplifted, exposed, and eroded, before being buried by
a condensed, anoxic interval. In our conception, the Albian
succession was exposed when the passive margin rode over
the outer swell (Jacobi 1981). The exposure generated the
pisolitic soil horizons, which were investigated and described
in detail by Thomson et al. (2011). Afterwards, the region sub-
sided to form a restricted marginal marine to marshy envi-
ronment that progressively deepened and is represented by
the thin radioactive condensed horizon containing fish hash
but no foraminifera, which Thomson et al. (2011, p. 281) in-
terpreted to represent “an offshore marine environment …

where sediment input to the system is minimal”. The lack
of sediment influx and inhospitable conditions for benthic
life suggest to us that the area lay on the outer trench-slope,
where sediment-starved conditions are typical. The overlying
westerly derived siliciclastic rocks of the Trevor Formation
represent orogenic debris shed from the hinterland.

Strata in Mexico, Arizona and New Mexico
A more complete geological record is preserved in north-

ern Mexico and the southwestern United States (Fig. 23),
where a pene-contemporaneous basin known as the Bisbee–
Arperos seaway, or trough (see Martini et al. 2014) is well-
exposed, relatively undeformed, and unconformably over-
lies pre-Nevadan Jurassic and Tithonian sedimentary and vol-
canic rocks of the Peñasquitos and Cucurpe formations, both
deformed between about 145 and 139 Ma (Mauel et al. 2011;
Kimbrough et al. 2014; Hildebrand and Whalen 2014, 2021a).
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Fig. 22. Sketch map of part of the Selwyn Basin showing stratigraphic units, thrust faults, and 99–93 Ma plutons that postdate
the thrust faults. Location of area shown on Fig. 5. From Murphy (1997).

These units constrain the age of the pre-collisional seaway to
be younger than about 140 Ma.

The eastern side of the trough is characterized by a
west-facing Lower Cretaceous continental margin capped
by a widespread carbonate platform/ramp, known as the
Guerrero–Morelos platform in central-southern Mexico or
Mural Formation of the Sonoran platform in Arizona and
Sonora (Lawton et al. 2020a). During the late Albian, up-
ward growth of the west-facing carbonate platform stopped,
as marked by a disconformity atop massive bioclastic car-
bonate overlain by a few meters of well-laminated beds of
detrital carbonate, breccia, condensed horizons rich in Late
Albian faunal debris (Fig. 24), and capped by a thin interval
of hemipelagic shale, itself passing up section into the exten-
sive Cenomanian Mexcala flysch (Monod et al. 2000; Lawton
et al. 2020b). U-Pb analyses of detrital zircons from the Mex-
cala flysch in central Mexico, just east of the suture (Lawton
et al. 2015), yielded large age peaks at 97 and 95 Ma (Fig. 25).

To the north in the Bisbee Basin, the dominantly Albian
Mural Limestone of the west-facing carbonate (Sonoran) plat-
form/ramp (Fig. 23) was buried by at least 1500 m of west-
erly derived Cenomanian and Turonian fluvial and shallow

marine siliciclastic rocks termed the Cintura Formation in
Sonora and southeastern Arizona and in southwestern New
Mexico, the Mojado Formation (Warzeski 1987; Jacques-Ayala
1995; González-León et al. 2008). Both are interpreted to have
been deposited in a flexural foredeep by fluvial systems (Mack
1987; González-Léon and Jacques-Ayala 1988; Lawton et al.
2020b). The southwesternmost exposures of the Cintura For-
mation are in excess of 2000 m thick and are overlain gra-
dationally by latest Albian–early Cenomanian fluvio-deltaic
sandstone with sparse pebbles of quartzite and limestone and
overthrust from the southwest by plutonic rocks (Jacques-
Ayala 1992; Lawton et al. 2020b). In Sonora, the Cintura
Formation is overlain by conglomerate and intercalated an-
desite of the Cocóspera Formation, the latter of which yielded
a 40Ar/39Ar age of 93.3 ± 0.7 Ma (González-León et al. 2011).
Lawton et al. (2020b) demonstrated the coeval nature of the
west-facing, passive margin sequence of North America with
the Alisitos arc of the Guerrero Superterrane to the west, es-
tablished the temporal correlation between the Mojado and
Cintura formations by U-Pb studies of detrital zircons and ash
beds, inferred steep subsidence curves in the Sonora sector
of the basin at ∼100 Ma, and confirmed the consanguineous
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Fig. 23. Sketch map illustrating key geological units of the Peninsular Ranges orogeny and Aptian–Albian volcano-sedimentary
rocks of the Alisitos——Santiago Peak arc, various subterranes of the Guerrero superterrane, and Albian carbonate platforms,
mostly located west of the younger Laramide suture and its related fold-and-thrust belt. The Peninsular Ranges batholith
continues the length of Baja California, as indicated by a conspicuous aeromagnetic anomaly (Langenheim et al. 2014), but
the batholith is buried by younger volcanic rocks south of the state line. Red dots represent drilled and dated core from La
Posta plutons (Duque-Trujillo et al. 2015). Rocks of similar age and lithology to those of the Peninsular Ranges batholith crop
out in Zihuatanejo (Centeno-García et al. 2011). Westward-facing Albian carbonate banks of the Sonora and Guerrero–Morelos
platforms were pulled westward beneath rocks of the Guerrero superterrane at 100 Ma during closure of the Bisbee–Arperos
seaway. We follow Hildebrand and Whalen (2014) and include the Cortes and Caborca terranes in Guerrero superterrane as
they were thrust over the Sonoran shelf at ∼100 Ma (Pubellier et al. 1995). Co–Concordia; MP–Mineral de Pozos; RG–Rio Grande;
TT–Teloloapan thrust.

nature of the fluvial to marine foredeep system as far to the
east as El Paso, Texas, and northeast to the Dakota Formation
of the southeastern Colorado Plateau and Western Interior
Basin (Fig. 26).

The lack of an Albian foredeep succession and related fold-
thrust belt in southern Arizona and Mexico suggest that the
Sevier collision, and thus, the Sevier colliding block, did not
impact North America at this latitude. Likewise, the lack of
similar features, discussed previously, on the Peel Plateau in
northern Canada, constrain the northern extent of the in-
coming Sevier block and hence its overall length to about
2000 km.

The Peninsular Ranges orogeny

Hildebrand and Whalen (2021a, 2021b) expanded their ear-
lier tectono-magmatic synthesis of the southwestern United
States and Mexico (Hildebrand and Whalen 2014) to include
the mid-Cretaceous geology of the Cordillera from southern
Mexico to Alaska, which they interpreted to represent the

closing of an oceanic trough, or basin, by westerly subduction
at about 100 Ma, an event they termed the Peninsular Ranges
orogeny. What follows is only a brief synopsis as the develop-
ment of the orogen along the length of North America was
described and discussed in the two most recent papers cited
above.

The basin, or trough, was an ocean that formed after
the Late Jurassic——Early Cretaceous Nevadan orogeny and
associated post-collisional magmatism, when a long, linear
sliver rifted from the western margin of the tectonic col-
lage of previously accreted terranes then attached to the
westernmost margin of North America. As originally sug-
gested for the general case by Wilson (1968), the basin
opened more or less along the Jurassic suture such that
fragments of the collision ended up on both sides of the
ocean basin (the subsequently named Wilson cycle). The
trough was open for ∼40 million years and during the
Early Cretaceous a west-facing, passive-margin, sedimen-
tary prism was deposited on its eastern margin (cratonic
North America) whereas a well-developed, dominantly ma-
rine arc developed on the western fragment, or ribbon
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Fig. 24. Detailed cross section of the uppermost few meters of the west-facing Guerrero–Morelos carbonate platform showing
the rapid transition from carbonate shelf to orogenic deposits near Concordia, Estado de Guerrero. Hoffman (2012) presents
an excellent overview of the process of platform foundering at the beginning of orogenesis. The figure is modified from Monod
et al. (2000). (For location of Concordia, see Fig. 23.)

Fig. 25. Detrital zircon populations from four turbidite samples collected in central Mexico east of the suture between the
Guerrero Superterrane and North America illustrating the dominant post-100 Ma peaks (from Lawton et al. 2015). (See Fig. 23
for locations: MP–Mineral de Pozos and RG–Rio Grande.) Plotted with detritalPy; Sharman et al. (2018).

(Coney et al. 1980; Campa and Coney 1983; Tardy et al. 1994;
Dickinson and Lawton 2001; Centeno-Garcia et al. 1993, 2008,
2011). The arc, known in southern California and Penin-
sular Mexico as the Alisitos–Santiago Peak arc, was active

from about 130 Ma until ∼100 Ma (Hildebrand and Whalen
2014).

As described above, platformal-carbonate rocks of the west-
erly facing passive margin in Mexico are disconformably over-
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Fig. 26. Stratigraphic correlations from Bootheel area of southwestern New Mexico (Fig. 5) northeast to eastern Colorado
Plateau at San Ysidro, illustrating detrital zircon maximum depositional ages, and tuff ages of Mojado Formation and strati-
graphic equivalents modified from Lawton et al. (2020b). The Mojado Formation is the more easterly correlative of the Cintura
Formation in Arizona and Sonora, which is the clastic wedge that sits atop the west-facing Mural carbonate platform of the
Bisbee Basin. Location of sections and line are shown in Fig. 5.

lain by a few meters of transported carbonate and condensed
horizons rich in Late Albian faunal debris (Fig. 24) capped
by hemipelagic shale and Cenomanian Mexcala flysch con-
taining 97–95 Ma detrital zircons (Fig. 25) similar in age
to those of the Frontier and Dunvegan formations to the
north. The disconformity, as well as the rapid tectonic subsi-
dence and burial of the carbonate platform by hemipelite and
orogenic flysch, is readily explained by a collision, during
which transport of a platform over the outer swell to a trench,
where it was eroded (Jacobi 1981). Then, as the platform
was pulled into the trench, it was covered by a thin veneer
of hemipelagic mud deposited on the starved outer-trench
slope, only to be overwhelmed by trench-fill turbidites upon
arrival in the trench axis (see Sinclair 1997; Hoffman 2012;
Sabbatino et al. 2021). These rocks were detached and scraped
off their cratonic basement, accreted to the upper plate as
part of the accretionary prism, and then transported east-
wards over the craton.

The post-100 Ma detrital zircons in the orogenic flysch
were most plausibly derived from the suite of 99–86 Ma La
Posta plutons (Fig. 23), which were emplaced into the colli-
sional hinterland located west of the foredeep (Hildebrand
and Whalen 2014). The plutons postdate ∼100 Ma deforma-
tion of the Alisitos–Santiago Peak arc and its basement of
Guerrero superterrane, as well as the drowning and burial
of the west-facing upper Albian carbonate platform perched
on the western margin of North America (Hildebrand and

Whalen 2014). The La Posta plutons intrude as far west as
the Santiago Peak–Alisitos arc, but predominantly outcrop
just to the east of it (Fig. 23), and have long been recog-
nized to differ in age, trace element and isotope content,
opaque mineralogy, depth of emplacement, and crustal thick-
ness from the Alisitis-Santiago Peak arc rocks (Gastil et al.
1975, 1990; Silver et al. 1979; Gromet and Silver 1987; Silver
and Chappell 1988; Kimbrough et al. 2001; Tulloch and Kim-
brough 2003). We compiled modern geochemical data from
both the Alisitos–Santiago Peak arc rocks and the post-100
Ma La Posta plutons and found consistent major and minor
geochemical differences between the two suites (Hildebrand
and Whalen 2014). For example, most rocks of the La Posta
plutonic suite contained 60%–70% SiO2 whereas the arc suite
displayed a continuous range from basalt to rhyolite. Rel-
ative to the arc rocks, members of the La Posta suite are
generally more enriched in incompatible elements, Na, and
Nb, but are depleted in Y and Yb. We exploited the dif-
ferences between the pre- and post-collisional suites to de-
velop several discrimination diagrams (Fig. 27) that distin-
guish arc from failed slab rocks, and then tested them us-
ing Cenozoic suites (Hildebrand et al. 2018), before apply-
ing the discriminants to other Cordilleran batholiths in west-
ern North America, where we found similar rocks and rela-
tions northward through the Cordillera to Alaska (Hildebrand
and Whalen 2017; Whalen and Hildebrand 2019; Hildebrand
and Whalen 2021a, 2021b). More recently, these discrimi-
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Fig. 27. Volcanic and plutonic samples with SiO2 > 60% from the Peninsular Ranges batholith plotted on five discrimination
diagrams modified from Hildebrand and Whalen (2014, 2017) and Whalen and Hildebrand (2019). Santiago Peak–Alisitos arc
rocks are 130–100 Ma, whereas the post-collisional La Posta suite is 100–86 Ma. The Nb vs. Y and Ta vs. Yb discrimination
diagrams were modified from Pearce et al. (1984) by addition of fields for post-collisional and arc plutons based empirically on
samples from the Peninsular Ranges batholith. Alisitos volcanic arc data are from Morris et al. (2019).

nation diagrams have been applied elsewhere to discrim-
inate arc from failed slab rocks (e.g., Archibald and Mur-
phy 2021; Dostal and Jutras 2021; Gianni and Navarrete
2022).

Understanding the age of collision is important not only for
resolving the origin of plutons in the hinterland (Hildebrand
and Whalen 2017) but also because the debris eroded from
them during uplift and exhumation can be used to demon-
strate that specific depocenters or even entire basins can
be properly recognized as post-collisional. For example,
Kimbrough et al. (2001) demonstrated that the La Posta plu-
tons of Peninsular and Southern California closely postdated
a period of contractional deformation, were deep-seated, and
emplaced during rapid uplift/exhumation on the basis of
debris, including 99–92 Ma zircons, shed rapidly westward
from the rising hinterland into what they assumed was a
forearc basin represented by rocks of the Valle Group. How-
ever, as we demonstrated, subduction was westward beneath
the Alisitos–Santiago Peak arc, and so the Valle Group was
deposited west of the thickened collision zone and not in

a pre-collisional forearc setting. In fact, similarly preserved
fragments along strike, such as the Valle and eastern Great
Valley groups, the Hornbrook of the eastern Klamaths, the
Ochoco Group of Oregon, the Cascade River schist, lower
Nanaimo Group, Queen Charlotte Group, and the McHugh
complex——all of which contain abundant 100–90 Ma detri-
tal zircons——combine to suggest that the westerly basin, or
sea, was continuous from the Baja Peninsula to Alaska and
was partially filled after the collision in a retro-collisional
setting, not in a forearc (Hildebrand and Whalen 2021a,
2021b).

In another case, researchers working in central Mexico
argued that the Arperos sector of the basin closed dur-
ing the lower Cretaceous (Martini et al. 2013) rather than
at about 100 Ma as we suggested (Hildebrand and Whalen
2014). They cited a location in the complex thrust stack
of the Sierra de Guanajuato (Fig. 23) where a ∼50 m-
thick Aptian–Albian carbonate unit, known as the La Per-
lita Formation, unconformably overlies a basal conglomerate
deposited on greenschist-grade, isoclinally folded, Tithonian–
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Berriasian metasedimentary rocks (Chiodi et al. 1988;
Quintero-Legorreta 1992; Martini et al. 2011), so inferred that
the rocks of the La Perlita Formation were deposited after
collision. However, elsewhere in the Sierra they noted sev-
eral thrust sheets carrying younger volcanic and related epi-
clastic successions such as the westerly derived Teloloapan
and Arperos formations and the easterly derived, siliciclas-
tic Cuestecita Formation, which all have the youngest detri-
tal zircon peaks ranging mainly from 133 to 116 Ma, con-
sistent with ages of the Alisitos–Santiago Peak arc built on
Guerrero superterrane (Talavera-Mendoza et al. 2007; Martini
et al. 2011), as well as upper Aptian–upper Albian plat-
form facies to the east on the North American side of the
basin (Lawton et al. 2004). These observations suggest that
the Tithonian–Berriasian successions in the Sierra de Gua-
najuato are correlative with the more northerly Cucurpe
and Peñasquitos successions, both deformed between about
145 and 139 Ma (Mauel et al. 2011; Kimbrough et al. 2014;
Hildebrand and Whalen 2014, 2021a), and then overlain by
rocks of the Bisbee–Arperos basin, much in the way the older
deformed successions of the Sierra de Guanajuato were over-
lain by conglomeratic and carbonate rocks of the Albian La
Perlita Formation. Thus, we see no conflict between areas,
and the stratigraphy constrains the age of the seaway to
be younger than about 140 Ma with terminal collision at
about 100 Ma. This is consistent with the geology farther
south in the Zihuatanejo area (Fig. 23), where 250 m of Al-
bian carbonate of the Ixtapa Formation was uplifted, eroded,
and unconformably overlain by 2–10 m of carbonate-clast
conglomerate and breccia capped by >2000 m of molasse:
red volcaniclastic sandstone, conglomerate, and shale, con-
taining samples with detrital zircon peaks of 123, 109, 106,
99, 97, and 94 Ma (Martini et al. 2010; Martini and Ferrari
2011; Centeno-Garcia et al. 2011), which represent both pre-
collisional arc and post-collisional plutons of the La Posta
suite.

Although dismembered and translated during younger tec-
tonic events, the rocks and their temporal relations as found
in the southwestern North American sector (Fig. 28) are read-
ily recognized and correlated northward along the entire
Cordillera from southern Mexico to Alaska and constitute the
Peninsular Ranges orogeny (Hildebrand and Whalen 2021a,
2021b). The continent-long parallelism between the struc-
tural axis of the orogen, coupled with the post-collisional
basin to the west of the collision zone, suggests to us that
rocks within the mid-Cretaceous succession of the Western
Interior Basin were not deposited in a retro-arc foreland basin
developed above an easterly dipping oceanic slab (Dickinson
1970), but instead may have formed as a collisional foredeep
related to westerly subduction and collision of the Peninsu-
lar Ranges composite terrane with North America during the
∼100 Ma Peninsular Ranges orogeny (Fig. 28). With the tim-
ing of the collision to the west reasonably well-constrained,
along with numerous dated bentonite beds and detailed stud-
ies of detrital zircons from many stratigraphic units within
the Western Interior basin, it seemed timely to ask: How does
the stratigraphy, sedimentology, and volcanism of the basin
fit with the mid-Cretaceous geology of the Peninsular Ranges
orogeny?

Discussion
During our study of the Cenomanian–Turonian stratigra-

phy of the Western Interior Basin, we recognized three dis-
tinct sectors of the basin: central, northern, and southern.
The northern sector is represented by the succession on the
Peel Plateau of Boreal Canada; the southern sector extends
from southern Mexico to southern Arizona; and the central
sector lies between the two.

In northern Canada and Arizona–Mexico, we interpret
foredeep sediments of the Peninsular Ranges orogeny to
sit disconformably atop Cretaceous passive margin sedimen-
tary successions, which themselves sit unconformably upon
cratonic North America basement (Hildebrand and Whalen
2021a, 2021b). In both regions, relations are straightforward:
a west-facing marine platform was uplifted, eroded, and then
promptly submerged, creating a succession that we inter-
pret to reflect the migration of a forebulge (see Crampton
and Allen 1995). In Mexico and southern Arizona, the plat-
form was capped by Albian carbonate as it was located in
a warm, southerly climate, whereas in the northern Cana-
dian Peel Plateau, the margin was muddy, as befits its north-
ern Boreal connection and location during the Cenomanian–
Turonian (Kauffman and Caldwell 1993; Kent and Irving
2010).

In the successions of southern Mexico, the top of the car-
bonate platform was disconformably overlain by 2 m of chan-
nelized calcarenites and calcareous turbidites, themselves
overlain by a condensed horizon containing an abundance
of closely packed Late Albian ammonites and rudist frag-
ments covered by an Mn-rich, dark-red to black, shaley coat-
ing (Monod et al. 2000), likely formed in an anoxic environ-
ment (Fig. 24). The carbonates were covered by less than a
meter of pelagic mudstone then buried by Cenomanian Mex-
cala flysch, which contains 97–95 Ma detrital zircons derived
from post-collisional La Posta plutons (Lawton et al. 2015) em-
placed into the orogenic hinterland farther west. Although
Mendoza and Suástegui (2000) considered that the carbonate
succession represents an upper-plate patch reef, it constitutes
part of an extensive thrust panel of upper Aptian–Albian plat-
formal carbonate, so we interpreted (Hildebrand and Whalen
2021a) the overall sedimentary succession above the discon-
formity, which consists of (1) shallow- to deep-water carbon-
ate deposition on the margin; (2) hemipelagic mud; and (3)
deep water siliciclastic turbidites, to represent superposition
of lateral facies changes as the migrating margin was pulled
downwards into the trench. Overall, it constitutes a typical
lower-plate foreland basin sequence (Sinclair 1997).

On the Peel Plateau of Boreal Canada (Fig. 5), a west-facing
mid- to upper-Albian marine siliciclastic margin (Fig. 21) was
uplifted and sufficiently exposed to develop a paleosol com-
plex comprising pisoidal ironstones containing sparse wood
fragments, then submerged and buried initially by black car-
bonaceous shale with thin, but rare, coal beds, overlain by
a 10 cm thick condensed section of radioactive, dark-black
mudrock containing fish teeth, bone and organic material,
but no benthic foraminifera, passing upwards into the Lower
Cenomanian Fish Scales marker, also devoid of foraminifera
(Thomson et al. 2011). Overlying Cenomanian–Turonian oro-
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Fig. 28. Similarities along strike within the Peninsular Ranges orogen, from Mexico to Alaska, of major sedimentological,
magmatic, and tectonic packages arranged from west to east, along with their age constraints, where known. Note the coeval
nature of most units along strike, which are comparable to the along-strike stratigraphic continuity found in units of the
Western Interior Basin over the same N-S distance. Modified from Hildebrand and Whalen (2021a).

genic deposits of the Trevor Formation, which were derived
from the west and contain abundant detrital zircons between
100 and 90 Ma (Hadlari et al. 2014), presumably derived from
99 to 93 Ma post-deformational plutons to the southwest in
the Selwyn basin (Figs. 5 and 22). This sector represents a sili-
ciclastic, more northerly version of a typical foreland basin
(Sinclair 1997).

Between the Arizona–Mexican and northern Canadian sec-
tors, the western part of North America was earlier affected
by the Sevier orogeny (Fig. 29), which involved 124–105 Ma
thrusting and development of a foredeep trough (Lawton et
al. 2010; Yonkee and Weil 2015; DeCelles and Coogan 2006),
so the overall stratigraphic succession is different there. Nev-
ertheless, the relations within the sector are similar to those
both north and south in that pre-existing Albian sedimen-
tary rocks were uplifted and exposed just prior to 100 Ma,
subaerially exposed, after which they were incised by flu-
vial systems; then rapidly buried by neritic successions, com-
monly deposited in paleovalleys eroded in mid-Cretaceous
sandstone. These successions fine upwards into mudstone
and a condensed, anoxic section containing abundant fau-
nal debris, overlain the length of the basin by Cenomanian

Fig. 29. Cartoon view of western North America just be-
fore ∼124 Ma collision illustrating arrival of the Sevier up-
per plate. Its collision with North America was followed at
∼100 Ma by the arrival of another ribbon, this one carrying
the Santiago Peak–Alisitos arc, during the Peninsular Ranges
orogeny.

clastic wedges, such as the Dunvegan, Frontier, and Mexcala,
which contain 97–93 Ma detrital zircons (Figs. 7, 20, 21, and
25).
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In all three sectors, the post-unconformity, neritic succes-
sion fines upward into mudstones that, in turn, pass upwards
into a condensed anoxic section termed either the Fish Scales
Formation or the Mowry Shale, each of which contains abun-
dant fish scales, teeth, and disarticulated bones. In most sec-
tors, the condensed section is accompanied by abundant ben-
tonite beds and an endemic gastroplitine ammonite fauna,
which collectively provide excellent age control. Nearly ev-
erywhere in the basin atop the condensed, bentonite-rich
zone, there are easterly prograding clastic wedges, such as
the Trevor, Dunvegan, Frontier, Cintura, and Mexcala units,
each of which contains abundant detrital zircons with ages
between 99 and 90 Ma, indicating that the wedges represent
post-collisional molasse.

The overall sequence sitting atop a regional, eastward-
migrating disconformity of (1) shallow-water sediments fin-
ing progressively upwards into (2) condensed hemipelagite,
overlain by (3) orogenic debris derived from the rising
hinterland is typical of the sedimentation in active colli-
sional foredeeps (Crampton and Allen 1995: Sinclair 1997;
DeCelles 2012; Sabbatino et al. 2020, 2021). Although the
overall mid-Cretaceous stratigraphy is convincing and fits
the timing known from the Peninsular Ranges orogeny
(Hildebrand and Whalen 2021a, 2021b), the following addi-
tional points support our stratigraphic argument that the
overall Cenomanian–Turonian succession within the basin
better fits a collisional foredeep setting than the more widely
accepted retro-arc basin scenario.

First, sedimentation within the basin was remarkably con-
sistent, both across and along its length, as well as tempo-
rally, which collectively requires a plate-scale explanation,
not one related to displacement, loading, and flexure on indi-
vidual thrust faults. This problem is especially acute because
researchers have demonstrated that thrust timing, shorten-
ing, and hence loading, in the fold-thrust belt varied along
strike (Price and Sears 2000; DeCelles and Coogan 2006).

Second, the width of the basin is simply too large, some
1500 km, to be explained by lithospheric flexure generated
by a thrust load to the west or to rise of sea level (Beaumont
et al. 1993). This led some workers to speculate that a slab of
cold oceanic lithosphere dipped eastward beneath the craton,
which, along with sea level rise, pulled the surface downward
to create a basin that could be as wide as 1500 km (Mitrovica
et al. 1989). How a shallowly dipping slab can exist when cra-
tonic lithosphere is thick remains unresolved. Also, arc mag-
matism appears to have ceased at 100 Ma (Hildebrand and
Whalen 2021a, 2021b) coincident with drowning of the North
American passive margin and its burial by orogenic clastics.

The eastward migration of the peripheral bulge from near
the thrust front to the Dakotas, some 650 km to the east,
is too broad to be caused by loading of thrust faults in the
fold-thrust belt, especially given that sedimentation in the
basin was sparse at that time. Following passage of the bulge,
this area of the basin was closer to the thrust belt, yet re-
ceived only limited sedimentary input, which is inconsistent
with thickening, loading, exhumation, and emergence in the
thrust belt to the west.

Where the westerly derived clastic wedges have been stud-
ied in great detail, such as the distal regions of the Dunve-

gan clastic wedge, individual prodeltaic clinoforms are doc-
umented to have prograded across the anoxic Fish Scales
unit for up to 800 km, demonstrating the essentially fea-
tureless, low gradient, and isochronous nature of the Fish
Scales–Mowry horizon (Bhattacharya 1994; Plint et al. 2009).
A similar result was found by Byers and Larson (1979), who
used bentonite datum planes to document that the Frontier–
Mowry contact was isochronous and dipped very gently east-
ward over the width of the basin. It is difficult to reconcile
these observations with a retro-arc setting where the basin
was caused by a thick thrust stack located to the west, as
in that case the basinal floor should dip westward towards
the load, not eastward as observed. This observation is better
understood to represent the rebound of the collisional hin-
terland once slab break-off freed the cratonic lip from the
oceanic slab pulling it down.

Where not extremely altered, trace element geochem-
istry of the Upper Cretaceous bentonites suggests that
they are not arc magmas, but instead, post-collisional
slab break-off magmas (Fig. 14). Compositions of volcanic
rocks of the Crowsnest Formation also support a break-
off origin, as early post-collisional magmatism is commonly
alkaline.

All these relations are better explained by attempted west-
ward subduction of the North American craton, which led to
the entire western edge of the craton dipping to the west as it
was pulled into the trench. After the forebulge on the margin
was uplifted and subsided beneath the wave base, the basin
floor dipped westward, but very gently. By deposition of the
Fish Scales unit, the floor of the basin was reversed again to
dip ever so slightly eastward, the opposite direction from that
expected for loading by thrust sheets to the west. It appears
that exhumation in the hinterland was not fully underway
until deposition of the Frontier and related clastic wedges.

If correct, then the Mowry–Fish Scales succession records
the syn- to early post-collisional time interval, and because it
is isochronous and occurs both across and over the length of
the entire basin, it is unlikely that the basin was the prod-
uct of dynamic topography, other than some initial subsi-
dence related to the vertical sinking of the detached slab. It
is more likely that, because the basin sits almost entirely east
of the North American cratonic hingeline, the effective elas-
tic thickness of the North American craton, which is a mea-
sure of its flexural rigidity (Turcotte 1979; Flück et al. 2003),
was likely in excess of 100 km, perhaps even 150–200 km
(Tesauro et al. 2015), consistent with other Precambrian cra-
tons (Zuber et al. 1989; Hansen et al. 2009). This is because
the thermal regime primarily controls the flexural rigidity,
except perhaps close to the hingeline, where there may have
been some local ductile necking during creation of the older
passive margin. Other potential modifications, such as heat-
ing from extension and magmatism within the United States
and Mexican Basin and Range, as well as those of the Rio
Grande Rift, are all much younger than the age of the ∼100
Ma Peninsular Ranges orogeny (Fig. 30), so it is reasonable
to infer a typical cratonic thickness for the area. If elastic
thickness is ∼125 km, typical for Precambrian cratonic litho-
sphere, Flück et al. (2003) calculated that the flexural wave-
length would be nearly 1100 km and would increase propor-
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Fig. 30. Effective elastic thickness (Te) of the lithosphere in kilometers for two different models of North America modified
from Tesauro et al. (2015). We suggest that during the Cretaceous the region east of the US hingeline had a thicker, more typical
cratonic Te than at present. The thickness was likely much diminished during the Cenozoic by extension and magmatism.

tionally with a thicker elastic thickness. This calculation is
consistent with the distance from the thrust belt to the Black
Hills, which is about 600 km, approximately half the flexural
wavelength. Therefore, we favor flexural bending of the cra-
tonic lithosphere as it entered the trench, augmented by local
isostatic subsidence along the western margin caused by the
bulk of the thrust stack and related post-collisional sediments
sitting on the lithosphere.

The downward flexure of the cratonic or oceanic litho-
sphere into a trench is accompanied by the generation and
migration of an adjacent peripheral bulge, or lithospheric up-
warp, located seaward of the trench (Section 3–17: Turcotte
and Schubert 1982). The uplift causes stratigraphic conden-
sation and commonly a forebulge unconformity. Within the
Western Interior Basin, where temporal constraints are doc-
umented, such as the Wyoming–Dakota transect of the basin
(Fig. 4), exposure and incision of the sedimentary succession
due to relative sea level fall occurred earlier to the west in
Wyoming than in South Dakota, which is the reverse of that
expected for a basin that shoaled to the east. Our preferred
explanation is that the eastward migration and passage of
the peripheral bulge progressively elevated a sector of the
basin above sea level (such that it could be eroded), only for
it to rapidly subside below sea level rather promptly after
passage (Crampton and Allen 1995). The sector that rode up
and over the bulge then lay on the outer slope to the trench,
which is, in many places, a region characterized by low sedi-
mentation rates of mostly pelagic sediment (see Harris 2011;
Heirtzler 1974 for an example). Within the US sector of the
Western Interior Basin, the emergent Muddy and Newcas-
tle sandstones likely relate to the passage of the peripheral

bulge (Fig. 31), whereas the overlying and partly coeval Shell
Creek Shale consists of shale, fine sandstone, siltstone, and
bentonites deposited on the outer slope to the trench, lo-
cated some distance to the west. As the flexural bulge mi-
grated eastward into the craton, its wavelength likely in-
creased proportionately with a thicker elastic thickness as
it encountered older, thicker, and more rigid cratonic litho-
sphere (Flück et al. 2003), causing it to progressively widen
and decrease in amplitude, dampening its topographic and
stratigraphic expression and rendering it more difficult to
recognize.

Within the shaley units that sit atop the neritic-facies rocks
deposited on the western flank of the migrating flexural
bulge, the presence of bentonites might reflect ash erupted
from an arc approaching from the west, but in the case of
the upper Shell Creek and the Mowry shales, the bentonites
have compositions more consistent with post-collisional slab
failure magmas than arc magmas, as do volcanic rocks of
the Crowsnest Formation in Canada (Fig. 14). The volcanics
and associated sills are the only known magmatic rocks
other than bentonites within the predominantly sedimentary
succession, and so without an extensive data set of ages along
strike we cannot tell if break-off was diachronous as we ex-
pect, or merely leaked magmas locally. In either case, the age
of the unit relative to the basinal bentonites could be doc-
umented more precisely by obtaining high-quality 40Ar/39Ar
sanidine ages from the volcanic rocks.

Within the Canadian sector of the Western Interior Basin,
reliable radiometric ages from bentonites are scarce (Fig. 4).
However, the lithological similarities between the Canadian
and US sectors and their successions attest to similar origins.

C
an

. J
. E

ar
th

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
N

at
ur

al
 R

es
ou

rc
es

 C
an

ad
a 

on
 0

2/
08

/2
3

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://dx.doi.org/10.1139/cjes-2022-0089


Canadian Science Publishing

248 Can. J. Earth Sci. 60: 214–262 (2023) | dx.doi.org/10.1139/cjes-2022-0089

Fig. 31. Idealized eastward migrating peripheral bulges in Canada and the United States.

For example, basinal rock packages within the Fort St. John
and Colorado Groups (Fig. 31), such as the Walton Creek,
Paddy, Viking, and Bow Island successions, all exhibit ero-
sion, soil horizons, fluvial incision, and deposition of neritic
facies prior to re-submergence and deposition of overlying
shales, including the Fish Scales unit, prior to being over-
whelmed by westerly derived clastic wedges, such as the Dun-
vegan or Frontier with their abundant post-100 Ma detrital
zircons.

Isopachs of the lower part of the Shaftesbury Formation,
that is, the post Viking–Bow Island and pre-Fish Scales shale
unit (Fig. 5), yield insight into potential processes. First, note
the approximately logarithmic westward slope over the west-
ern 500 km of isopachs, which range from over 500 m in
the west to about 40 m in the east. As the Fish Scales unit
is essentially isochronous, the thickness of the basal shale
under it should reflect the slope of the surface beneath it
and provide a minimum for the available accommodation
space. The logarithmic nature of the thickness variations sug-
gests the bending, and likely rollback of the subjacent base-
ment, as the oceanic lithosphere steepened and was pulled

downward into the trench to the west. It is difficult to re-
late the bending to isostatic load as there was no commen-
surate deposit of coarse clastic debris that might signify the
emergence of a thrust stack to the west. Instead, the area
was exposed subaerially during the immediately underlying
Viking–Bow River interval, but rapidly subsided, a scenario
consistent with the eastward migration of a peripheral bulge
through the area (see also Roca et al. 2008; Fig. 28). The mi-
gration could be tested and refined by systematically dating
bentonites within the Viking–Bow River interval of the basin
by 40Ar/39Ar to ascertain if the outer swell migrated east-
ward at about the same rate as that in the United States. (See
Sabbatino et al. 2020, 2021, for a well-dated example from
the Apennine collisional orogen.) Nevertheless, on the basis
of the foregoing, we consider that the foredeep to the Penin-
sular Ranges orogeny displays the effects of the passage of the
peripheral bulge along its entire length from southern Mex-
ico to northern Canada and affected both pre-existing car-
bonate and clastic margins as well as older orogenic deposits
related to the Sevier orogeny in the central sector of North
America.
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In our collisional model, slab break-off must have occurred
rather widely by upper Shell Creek time as the number of
bentonites increases up section into the Mowry, where they
dominate the succession. The starved nature of the Mowry–
Fish Scales may represent the time when break-off was under-
way, but that exhumation of the hinterland had not started,
or at least was still insufficiently emergent to flood the basin
with sediment.

Models designed to observe surface deformation resulting
from slab break-off indicate that after break-off, the detached
part of the slab sinks vertically into the mantle, which creates
flow within the viscous mantle that pulls the overlying litho-
sphere downward (Buiter et al. 2002; Chatelain et al. 1992).
As the lithospheric slab sinks farther, the suction and down-
ward pull are reduced. Presumably, this would delay surface
uplift and exhumation such that sediment flux into the basin
would be dramatically retarded and reduced. This process
could create the somewhat short-lived sediment-starved se-
quence with a high flux of ash and an anoxic hypolimnion as
observed for the Fish Scales–Mowry succession. This is consis-
tent with the model of Plint et al. (2009), who argued that the
basin-wide Fish Scales Formation was a downlap surface and
represents a sedimentological hiatus of up to 2 Myr. It was
during this hiatus that the slope of the basin was reversed
from west dipping to east dipping, such that eventually the
first prodeltaic muds of the Dunvegan and Frontier clastic
wedges began to prograde eastward over the Mowry and Fish
Scale units on the shallowly dipping basin floor.

Although we are attracted to the concept of additional sub-
sidence due to slab break-off, it might only represent one
component, or may not even be necessary to explain the
lack of coarse detritus. A modern example of an accretionary
prism in front of a starved and underfilled oceanic trough,
but one in which the slab apparently has not failed yet, occurs
in the Timor Trough, the 3 km deep trench south of the island
of Timor, which represents an uplifted portion of the accre-
tionary prism between Australia and the Banda arc. There, as
noted by Harris (2011), the island of Timor is quite dry, with
only a 4-month rainy season which provides the bulk of the
1.3 m annual precipitation. Due to the long dry period, and
the consequent lack of vegetation, the amount of clastic sed-
iment transported from the mountains to the coast as cobbly
to pebbly debris by braided streams is huge: about 60% of the
annual discharge of the Ganges/Brahmaputra River system of
the Indian subcontinent (Cecil et al. 2003). As documented
by DSDP 262, none of the coarse sediment reaches the ad-
jacent Timor trough to the south, where only pelagic nano-
ooze was found to overlie the Australian carbonate platform
(Heirtzler 1974). Apparently, the coarse debris is trapped in
submarine piggy-back thrust basins on Timor and unable to
escape southward into the trench (Harris, personal commu-
nication, 2021). As southern North America was located near
30◦ N latitude during the mid-Cretaceous (Kent and Irving
2010), its western margin would have been relatively dry,
perhaps with seasonal rainfall not very different than today.
Thus, in the case of western North America, the combination
of topography, seasonal climate, lack of vegetation, coupled
with break-off-induced subsidence might have led to an espe-
cially starved basin.

One of the more interesting outcomes from our study
of the Peninsular Ranges orogeny is the recognition that a
new terrestrial faunal assemblage with Asian affinities (tyran-
nosaurids, hadrosaurids, pachycephalosaurs, snakes, anocid
turtles, and marsupials) arrived in North America at about
100 Ma, the time of accretion of the Peninsular Ranges com-
posite terrane, which suggests that the two events might be
related. Cifelli et al. (1997) indicate that the new fauna are
the oldest dinosaur fauna with representatives of each fam-
ily characteristic of the remainder of the Late Cretaceous in
North America. The bulk of the fauna was initially discov-
ered in the Mussentuchit Member of the Cedar Mountain For-
mation of central Utah, where the unit was deposited along
the terrestrial southern margin of the Mowry Sea (Fig. 3),
which allowed newly arrived fauna to migrate into east-
ern North America. Similar faunal assemblages were found
west of the seaway in the Blackleaf Formation of Montana
and the Willow Tank Formation of southern Nevada as dis-
cussed previously. Some paleontologists (Cifelli et al. 1997;
Kirkland et al. 1997, 1999) suggested that the introduction
of the new taxa wiped out the previous inhabitants to dom-
inate North America for the remainder of the Cretaceous.
As the Canada Basin was still open at 100 Ma (Grantz et al.
2011), it is unlikely that there was a direct Asian–North Amer-
ican connection as sometimes hypothesized (Kirkland and
Madsen 2007; Samson 2009); instead, it is more likely that
the fauna arrived on the Peninsular Ranges composite ter-
rane and spread throughout eastern North America follow-
ing the collision. Overall, the paleontological findings sup-
port our collisional model for the 100 Ma Peninsular Ranges
orogeny.

Summary
1. The tripartite succession of mid-Cretaceous stratigraphic

units within the Western Interior Basin lies discon-
formably upon older rocks and is readily interpreted in
terms of a collisional foredeep between the North Amer-
ican craton and the Peninsular Ranges composite ter-
rane (Fig. 32). Upper Albian sediments were derived from
the east, whereas Cenomanian–Turonian clastic wedges
were westerly derived.

2. The earliest sign of collision was the eastward migration
of the peripheral bulge from west to east along the west-
ern edge of cratonic North America (T1 and T2: Fig. 32)
just before it was pulled down into the trench. Rocks in
the western United States related to the uplift, erosion,
and re-submergence of the margin during migration of
the bulge were the Muddy and Newcastle sandstones,
which range in age from 101 to 99.5 Ma. Equivalent strata
in the Canadian sector include the Bruin Creek, Bow Is-
land, Viking, Peace River, and Sikanni successions, but
radiometric dating is scarce.

3. Thin, but westward-thickening, units of dark shale, such
as the Shell Creek Shale in the United States and the
Sully, Westgate, and Shaftesbury in Canada, were de-
posited on the starved outer slope of the trench between
about 100 and 99 Ma (T3: Fig. 32). Bentonite beds are
more common up section.
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Fig. 32. Our model for development of the mid-Cretaceous Western Interior Basin as a collisional foredeep.

4. The dark shales are overlain by a condensed and anoxic,
black-shale section, rich in fish debris and numerous
beds of bentonite and porcellanite, known as the Mowry
Shale in the United States and the Fish Scales Forma-
tion in Canada (T4: Fig. 32). In the United States, these
rocks were deposited between about 99 and 97.5 Ma. The
Shell Creek–Mowry–Fish Scales units contain five species
of endemic ammonites (Neogastroplites ssp.), which reflect
its restricted nature.

5. Bentonites deposited in marine environments are com-
monly altered, and their origin is difficult to deci-
pher. However by using relatively immobile high-field
strength and rare earth elements, those effects are mini-
mized. We found that the intercalated bentonites have
trace element compositions more typical of the failed
slab, not arc, magmatism. This suggests that slab fail-
ure took place just before, or during, deposition of the
Mowry–Fish Scales units, consistent with slightly older
ages for the alkaline Crowsnest volcanics in the south-
ern Canadian foothills.

6. Starting at about 97.5 Ma, the Mowry–Fish Scales unit
was overlain by westerly derived, and easterly to south-
easterly prograding, clastic wedges (T5: Fig. 32), which

contained igneous clasts and abundant detrital zircons
younger than 100 Ma derived from post-collisional mag-
matic rocks in the hinterland. These delta-front wedges
included, from north to south, the Trevor, Dunve-
gan, Frontier, Cintura–Mojado, and Mexcala successions
(Fig. 33).

7. Single delta-face clinoforms 10 m thick at the base of the
clastic wedges can be traced for 800 km sitting directly
on the Fish Scales unit, which, along with the evidence
outlined above, indicates that the Mowry–Fish Scales rep-
resents an isochronous unit deposited on a very gently
dipping eastward slope and that its upper surface might
represent ∼2 Myr of non-deposition. This precludes ex-
tensive thickening, uplift, and subaerial emergence of
the thrust stack to the west during deposition of the
Mowry–Fish Scales succession.

8. The Mowry–Fish Scales succession records the syn- to
post-collisional time interval and represents the reversal
of slope from westerly to easterly within the basin.

9. The presence of the Mowry–Fish Scales units over the
entire width and length of the basin rules out genera-
tion by dynamic topography caused by a gently eastward-
dipping slab, as there was no broadening of the basin
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Fig. 33. Approximate locations of five deltas that transported
material from the hinterland of the Peninsular Ranges oro-
gen into the trough on the basis of stratigraphy and detrital
zircon suites during the Middle to Late Cenomanian.

at that time. Instead, it is more likely that, because the
basin sat almost entirely east of the hingeline, it was
probably built on Precambrian cratonic lithosphere with
an effective elastic thickness (Te) of more than 100 km
(and perhaps even 150 km), the basin had a long wave-
length and so was broad and shallow, with a narrow west-
ernmost isostatic sector loaded by thrusts and coarse sed-
iment.

10. Recognizing that the Cenomanian to Turonian sedimen-
tary succession within the Western Interior Basin can be
interpreted as a collisional foredeep, developed during
the Peninsular Ranges orogeny, is consistent with the
presence of a westerly facing passive margin setting atop
North America, both in the south, where the platform
was capped by a carbonate bank, and farther north in
Canada, where it was a clastic margin.

11. The seemingly pene-contemporaneous break-off of the
lower North American plate from northernmost Canada
to southern Mexico suggests that the plate boundaries
were not irregular with large and identifiable promonto-
ries, but fundamentally linear. Within the limits of the
geochronology, which for the North American Cordillera
are at reconnaissance level compared to the Alpine and

Apennine belts, there was no obvious lateral migration
of subsidence and uplift as seen in collision zones where
lateral migration of slab detachment has been recog-
nized, such as the Apennines (van der Meulen et al. 1998,
1999). Thus, it appears that break-off may have occurred
rapidly over thousands of kilometers. More detailed stud-
ies, especially dating and improving the correlation of
regionally abundant bentonite beds may refine this con-
cept considerably.

12. The accretion of the Peninsular Ranges composite ter-
rane at ∼100 Ma was more likely to have led to arrival
of vertebrates from Asia and their subsequent dispersal
throughout North America, than their arrival by an un-
recognized polar route.
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