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A B S T R A C T

In the standard paradigm, continental crust is formed mainly by arc magmatism, but because the compositions of
magma rising from the mantle are basaltic and continental crust is estimated to contain about 60% SiO2 and
much less MgO than basalt, the two do not match. To resolve this paradox, most researchers argue that large
amounts of magmatic fractionation produce residual cumulates at the base of the crust, which because arcs are
inferred to have magmatically thickened crust, form eclogites that ultimately founder and sink into the mantle.
Not only are there problems with the contrasting bulk compositions, but the standard model also fails because
prior to collision most modern arcs do not have thick crust, as documented by their eruption close to sea level,
and in cases of ancient arc sequences, their intercalation with marine sedimentary rocks.

Our study of Cretaceous batholiths in the North American Cordillera resolves the crustal composition paradox
because we find that most are not arc-derived as commonly believed; but instead formed during the waning
stages of collision and consequent slab failure. Because the batholiths typically have silica contents> 60% and
are derived directly from the mantle, we argue that they are the missing link in the formation of continental
crust.

Slab failure magmas worldwide are compositionally similar to tonalite-trondhjemite-granodiorite suites as
old as 3.8 Ga, which points to their collective formation by slab failure and long-lived plate tectonics. Our model
also provides (1) an alternative solution to interpret compiled detrital zircon arrays, because episodic peaks that
coincide with periods of supercontinent amalgamation are easily interpreted to represent collisions with for-
mation of new crust by slab failure; and (2) that models of early whole-earth differentiation are more reasonable
than those invoking progressive growth of continental crust.

1. Introduction

How and when continental crust formed are contentious, long-
standing issues among geologists. Most geoscientists believe that con-
tinental crust formed principally by water-induced melting of the
mantle wedge above subduction zones to produce juvenile basaltic
melts, which rise into the crust where they fractionate (Rudnick, 1995;
Davidson and Arculus, 2006; Hawkesworth and Kemp, 2006; Tatsumi
and Stern, 2006; Lee et al., 2007; Stern and Scholl, 2010; Jagoutz and
Schmidt, 2012, 2013; Arndt, 2013; Jagoutz and Kelemen, 2015). This
paradigm is problematic because geologists estimate the bulk compo-
sition of continental crust to be andesitic-dacitic with just over 60%
SiO2 yet magmas rising into the crust within arcs are basaltic (Taylor
and McLennan, 1985, 1995; Rudnick and Fountain, 1995; Rudnick and
Gao, 2003; Hacker et al., 2011). The contradictory nature of the two

concepts creates what is known as the crustal composition paradox
(Rudnick, 1995).

The paradox is typically resolved with a circular argument that in-
vokes large-scale, lower-crustal foundering of residual material, domi-
nated by pyroxene, amphibole, and garnet cumulates, from the base of
magmatically thickened arc crust (Jagoutz and Behn, 2013; Lee and
Anderson, 2015). In the arc model, the dense cumulates and restites
must exist because most crust is manufactured in arcs, and the esti-
mated amount of fractional crystallization necessary to create rocks
with the composition of upper crust from arc basalt is ~86% (Kay and
Kay, 1991; Ducea and Saleeby, 1998; Ducea, 2001; Hawkesworth and
Kemp, 2006; Jagoutz and Kelemen, 2015; Lee and Anderson, 2015, and
references therein) and, based on mantle xenoliths from the Sierra
Nevada, along with cross sections of older arcs such as Kohistan,> 2:1
for bulk crust (Ducea, 1998; Ducea and Saleeby, 1998; Jagoutz and
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Schmidt, 2013). Thus, because the generally accepted model for the
bulk of crustal formation is arc magmatism (Rudnick, 1995;
Hawkesworth et al., 2009), huge volumes of residue must form in the
lower crust, and then be removed – presumably by gravitational
foundering (e.g., Lee and Anderson, 2015; Ducea, 2002; Saleeby et al.,
2003; Ducea and Barton, 2007; Jagoutz and Behn, 2013; Jagoutz and
Schmidt, 2013; Ducea et al., 2015) – as such thick crust is not observed.
This observation highlights another difficulty with the arc model, be-
cause in order for the inferred mafic residue to founder, it must first be
converted to eclogite, which requires pressures typically unattainable in
arc crust (Green and Ringwood, 1967; Poli, 1993; Hacker, 1996), as
prior to collision, arcs are generally low-standing regions without thick
crust (Levi and Aguirre, 1981; Hildebrand and Bowring, 1984; Busby-
Spera, 1988; Busby, 2012; Hildebrand and Whalen, 2014b, 2017).

Allied with the problem of how continental crust is formed is a long-
standing controversy over when the bulk of this crust was formed
(Fig. 1). Since the advent of plate tectonics, most researchers developed
crustal growth models in which the cumulative volume of continental
crust was derived progressively from the mantle to leave it depleted in
crust-forming elements (Hurley and Rand, 1968; O'Nions et al., 1979;
Veizer and Jansen, 1979; Allègre, 1982; Allègre and Rousseau, 1984;
Reymer and Schubert, 1984; Taylor and McLennan, 1985; McCulloch
and Bennett, 1994; Condie, 1998; Rino et al., 2004; Condie et al.,
2016). In this model, if continental crust was created progressively by
arc magmatism from the mantle, then arc magmatism must have
changed composition through time. Workers promoting this hypothesis

point to the tonalite-trondhjemite-granodiorite (TTG) suites common to
Archean cratons, but believed by many to be absent today (Moorbath,
1977; Jacobsen and Wasserburg, 1981; Martin, 1986; Martin and
Moyen, 2002; Jacobsen, 1988; McCulloch and Bennett, 1994; Kamber
et al., 2002; Kleinhanns et al., 2003; Arndt, 2013; Hawkesworth et al.,
2010; Jagoutz et al., 2011; Laurie et al., 2015), although a few re-
searchers (Drummond and Defant, 1990; Atherton and Petford, 1993)
suggested that younger examples exist.

In this contribution, we summarize our detailed studies on the
tectonic setting and geochemistry of Cordilleran-type batholiths
(Hildebrand and Whalen, 2014a, 2014b, 2017) and conclude that a
major crust-forming process has been largely overlooked, in that Cor-
dilleran batholiths appear to be dominated – not by arc magmatism –
but by magmas produced during slab failure. We argue that this mag-
matism provides the missing link in the formation of continental crust
and so precludes the necessity of large-scale, sub-arc foundering, be-
cause the more siliceous compositions of slab failure magmatism “bal-
ance” the less siliceous arc basalts. Furthermore, we show that the
geochemistry of Phanerozoic slab failure rocks is similar to that of
Precambrian TTG suites, which leads us to argue that similar tectono-
magmatic processes have been active since at least 3.8 Ga.

Our findings support models in which the volume of continental
crust has remained more or less constant over time and that ongoing
crustal growth was, and is, balanced by recycling of older continental
crust into the mantle (Fyfe, 1978; Armstrong, 1981, 1991; Bowring and
Housh, 1995; Hildebrand and Bowring, 1999). We also argue that slab
failure magmatism explains the episodic peaks in crystallization ages
indicative of magmatic activity (Condie et al., 2017) because the peaks
broadly coincide with periods of supercontinental amalgamation
(Hawkesworth et al., 2009, 2013, 2016), which involve an increase in
the number of collisions and related slab failure.

2. What is slab failure?

Slab failure is the rupture and separation of subducting plates
during collisions. It occurs during collisions because continents are
buoyant and resist subduction, whereas all but the youngest oceanic
lithosphere is negatively buoyant relative to the asthenosphere, so is
pulled down into the mantle by gravity (Roeder, 1973; Price and
Audley-Charles, 1987; Sacks and Secor, 1990; Davies and von
Blanckenburg, 1995; Davies, 2002; Atherton and Ghani, 2002). During
slab break-off, oceanic lithosphere, and transitional crust of rifted
margins, which, like oceanic crust, is effectively welded to the subjacent
mantle. These domains tear off and are subducted into the mantle
(Fig. 2). During this process the sedimentary platform-cover sitting atop
the buoyant continental crust is “scraped off”, jaming the subduction
zone (Cloos et al., 2005; Duretz et al., 2011; Bercovici et al., 2015).
Following break off, the lower plate rebounds to underplate the arc
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Fig. 1. Crustal growth curves modified from Bowring and Housh (1995); Rino
et al. (2004); Hurley and Rand (1969); McLennan and Taylor (1982); Allègre
(1982); McCulloch and Bennett (1994); Reymer and Schubert (1984),
Armstrong (1981), and Fyfe (1978); McLennan and Taylor (1982); Dhuime
et al. (2012); Belousova et al. (2010); Condie and Aster (2010).
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Fig. 2. Sketches illustrating some features of moderately
deep slab failure. In (a) the leading edge of the continet is
subducted beneath the overriding arc-bearing plate; in (b)
we illustrate the tearing of the subducting slab largely by
ductile necking; and in (c) we show the possibility of the
rifted margin separating from the main continental mass
and sinking into the mantle along with the oceanic litho-
sphere as suggested by Hildebrand and Bowring (1999). In
our model magmas are derived from melting of the
oceanic crust. Adapted from Freeburn et al. (2017).
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(Magni et al., 2017). It is partly this buoyancy-driven rebound that
exhumes high and ultra-high pressure (UHP) rocks of the subducted
continental margin and drives erosion and extensional collapse of the
upper, arc-bearing, plate (for example: Ernst et al., 1997).

Another factor that can contribute to uplift and exhumation of the
collision zone depends on the angle of subduction, or slab dip, when
tearing occurs. If the slab dip is moderate, then lithospheric mantle is
replaced as asthenosphere rises through the newly formed gap in the
ruptured plate, which itself can generate a vertical isostatic uplift of
several kms to the collision zone (Cloos et al., 2005).

It is commonly believed that hot asthenosphere rising through the
gap melts due to decompression or possibly heat from the overlying
lithosphere (Davies and von Blanckenburg, 1995; Macera et al., 2008;
Hildebrand, 2009, 2013); however, recent numerical models, designed
specifically to investigate the conditions required to create slab failure
magmatism, suggest that this might only happen in cases of very
shallow break-off (Freeburn et al., 2017). When the angle of subduction
is steep, as might be the case in the subduction of old, dense oceanic
lithosphere, or in deep break-off, then asthenosphere does not ne-
cessarily upwell, but instead flows laterally, or even downward, to fill
the gap (Fig. 2). In this case, asthenosphere probably would not melt
adiabatically and the origin of syn- to post-collisional magmatism is
more obscure.

3. Slab failure magmatism

We began to characterize slab failure magmatism with examples
from collisional orogens in our “home” orogens of Wopmay and the
Appalachians (Hildebrand and Bowring, 1999; Whalen et al., 2006) but
in 2013 decided to combine our experience and interest to better
characterize the magmatism and understand its potential importance in
space and time. Initially, we examined the Cretaceous Coastal batholith
of Peru (Cobbing et al., 1981; Pitcher et al., 1985) and by using the
temporal relations between magmatism and deformation, developed a
model in which the bulk of the plutonic rocks that make up the bath-
olith were products of slab failure (Hildebrand and Whalen, 2014a).

3.1. Peninsular Ranges batholith

Our understanding improved when we focused on rocks of the
Peninsular Ranges batholith of Southern and Baja California where
there are detailed maps, ICP-MS geochemistry, and modern U-Pb dating
(Lee et al., 2007; Morton and Miller, 2014). There, we studied the two
major suites of magmatism: the ~128–100Ma Santiago Peak-Alisitos
arc and 99–86Ma La Posta plutons, which sit more or less side by side
and have long been recognized to differ in age, trace element and iso-
tope content, opaque mineralogy, depth of emplacement, and crustal
thickness (Gastil et al., 1975, 1990; Silver et al., 1979; Gromet and
Silver, 1987; Silver and Chappell, 1988; Kimbrough et al., 2001;
Tulloch and Kimbrough, 2003). Although all workers agreed that the
older Santiago Peak-Alisitos rocks represented a magmatic arc, the
tectonic setting of the younger La Posta magmatism was generally in-
ferred by most researchers to represent a continuation of arc magma-
tism, despite development of numerous models that invoked closure of
back-arc basins and collisions just prior to their emplacement (Silver
and Chappell, 1988; Gastil et al., 1981; Gromet and Silver, 1987; Todd
et al., 1988; Walawender et al., 1990; Busby et al., 1998; Johnson et al.,
1999; Kimbrough et al., 2001; Ortega-Rivera, 2003; Schmidt et al.,
2014).

Rocks of the Santiago Peak-Alisitos arc comprise mostly weakly to
moderately deformed, low-grade, shallow marine, volcanic rocks and
associated epizonal plutonic rocks ranging in age from 128 to 100Ma;
whereas to the east, compositionally zoned, mesozonal plutonic com-
plexes of the 99–86Ma La Posta suite were emplaced into deformed
amphibolite grade rocks. Arc magmatism shut down during a period of
regional deformation and metamorphism, constrained to be about

100Ma (Premo and Morton, 2014; Johnson et al., 2002; Alsleben et al.,
2008; Schmidt et al., 2009). The metamorphism and deformation co-
incided with a period of eastward-vergent thrusting (Pubellier et al.,
1995) where rocks of the Guerrero superterrane, basement to the
128–100Ma Santiago Peak-Alisitos arc (Tardy et al., 1994; Dickinson
and Lawton, 2001; Centeno-García et al., 2003, 2008, 2011; Schmidt
et al., 2014), were placed over a drowned west-facing Albian carbonate
platform (Warzeski, 1987; Lawton et al., 2004; LaPierre et al., 1992;
Monod et al., 1994, 2000; González-Léon et al., 2008; Martini et al.,
2012) and related eastwardly migrating flexural foredeep, comprising
upper Albian to Turonian siliciclastic sedimentary rocks (Mack, 1987;
González-Léon and Jacques-Ayala, 1988; Monod et al., 2000). The
overthrusting of a west-facing marginal platform terrace by the arc
terrane is readily interpreted to indicate closure of a marginal basin,
known as the Bisbee-Arperos seaway, by westward subduction of
marginal basin lithosphere. This was followed by attempted subduction
of the leading edge of eastern Mexico beneath the Santiago-Peak-Ali-
sitos arc and its basement during the Oregonian event (Martini et al.,
2011, 2014; Hildebrand, 2013; Hildebrand and Whalen, 2014b, 2017).

3.2. Sierra Nevada batholith

The overall temporal and lithological similarities between the
Peninsular Ranges and Sierran batholiths have long been noted (Tyrrell,
1929; Daly, 1933); in fact, so much so, that they are commonly assumed
to have formed a continuous batholith (Hamilton, 1969; Ducea, 2001),
despite their separation by the younger region of Laramide deforma-
tion, metamorphism, and plutonism, which passes orthogonally be-
tween the two batholiths (Hildebrand, 2015). For our purposes their
original spatial relationships are unimportant, because in any case,
plutons of the Sierra Nevada batholith are closely comparable to those
of the Peninsular Ranges batholith. Cretaceous rocks of the Sierra
comprise a western facies consisting of arc supracrustal rocks and as-
sociated plutons (Clemens-Knott and Saleeby, 1999), that were de-
formed at, or just prior to 100Ma (Saleeby et al., 1990; Memeti et al.,
2010; Wood, 1997; Saleeby et al., 2008), and an easterly facies of post-
deformational 99–82Ma tonalitic-granodioritic plutons known as the
Sierran Crest magmatic suite (Coleman and Glazner, 1998). A major
~100Ma east-vergent thrust belt lies farther east (see summary in
Hildebrand and Whalen, 2017), but the location of the suture is ob-
scured by younger Basin & Range extension. Magmatism in both the
Sierra Nevada and Peninsular Ranges batholiths ceased at 83 ± 1Ma
(Coleman and Glazner, 1998; Saleeby et al., 2008).

3.3. Geochemistry

That magmatic rocks of the Peninsular Ranges and Sierra Nevadan
batholiths were both pre- and post-collisional fits all of the existing
data, and so we compiled and examined their geochemistry to ascertain
if there were attributes that might be used to delineate the two suites in
the absence of clear and unequivocal evidence for collision, and to
better understand the sources of their magmas. While they are super-
ficially similar, we found consistent major and minor geochemical
differences between the two suites (Hildebrand and Whalen, 2014b).
For example, most rocks of the La Posta and Sierran Crest magmatic
suites contained 60–70% SiO2 whereas the arc suite displayed a con-
tinuous range from basalt to rhyolite. Relative to the arc rocks, mem-
bers of the La Posta-Sierran Crest suites were generally more enriched
in incompatible elements, Na, and Nb, but depleted in Y and Yb (Fig. 3).
We exploited those differences to develop several discrimination dia-
grams (Fig. 4) and tested their reliability with geochemistry from much
younger arc and slab failure rocks (Fig. 5) before studying the tectonic
setting and geochemistry of other Cordilleran batholiths in western
North America and elsewhere (Hildebrand and Whalen, 2017). There,
we found that late syn- to post-tectonic plutons predominate, were
emplaced during exhumation of thickened crust, and are geochemically
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similar to our recognized slab failure rocks (Hildebrand and Whalen,
2017). Although pre-collisional arc rocks exist in some batholith belts,
such as the Peninsular Ranges and Sierra Nevada, they are spatially
subordinate to slab failure suites. Presumably, this is because arcs and
their basement constitute the upper plates of collisional belts and so
they are preferentially eroded during collision-related uplift and ex-
humation.

4. Origin of slab failure magmatism

The transverse compositional asymmetry of Cordilleran batholiths
within North America has long been recognized (Lindgren, 1915;
Buddington, 1927; Larsen, 1948; Moore, 1959: Moore et al., 1961;
Silver and Chappell, 1988), and following the advent of plate tectonics
most researchers developed models in which older Cretaceous plutons
were emplaced into accreted terranes above an eastwardly dipping
subduction zone. In that model, shallowing subduction forced mag-
matism to prograde eastwardly into the western margin of North
America where it interacted with, and assimilated, older cratonic crust
(Bateman, 1974; Kistler and Peterman, 1978; Kistler, 1978, 1990; Gastil
et al., 1981; Hamilton, 1988; Hill et al., 1988; Saleeby et al., 1990;
Walawender et al., 1990; Chen and Tilton, 1991; Johnson et al., 1999;
Todd et al., 2003; Grove et al., 2003; Ortega-Rivera, 2003; Ducea and
Barton, 2007; Paterson et al., 2014; Schmidt et al., 2014; Cao et al.,
2015; Ducea et al., 2015).

4.1. Trace elements

In their pioneering study of rare earth elements (REE) transversely
across the Peninsular Ranges batholith, Gromet and Silver (1987) de-
monstrated the inadequacy of upper crustal differentiation and assim-
ilation processes to explain the differences between the two magmatic
groups. They pointed out that the variations in Sr, δ18O, and REE
contents between the two suites indicated that, although the western
pre-100Ma rocks were typical arc rocks, the eastern, post-100Ma rocks
were derived from a plagioclase-free, garnet bearing source – most
likely eclogite. They suggested that altered oceanic basalts ponded at
the base of the crust and thickened it, only to be remelted later to create
the post-100Ma suite; but they were unable to explain how the oceanic
basalts might have been emplaced at the base of the arc crust prior to
arc magmatism in the east. While certainly attractive, models that in-
volve melting of basalt accumulated at the base of the arc are un-
satisfactory because the post-100Ma rocks are post-tectonic, and at the
time of the magmatism, the leading edge of the continental margin had
already been subducted beneath the arc, effectively isolating the arc
from the mantle. And the switchover happened far too rapidly for

accumulations of basalt to build up, as even the youngest arc rocks are
intercalated with marine sedimentary rocks in both the Peninsular
Ranges (Allison, 1974; Phillips, 1993; Busby et al., 2006) and Sierra
Nevada (Nokleberg, 1981; Saleeby et al., 2008; Memeti et al., 2010).

Nevertheless, our compilation of trace elements within the two
suites, pre- and post-collisional, supports Gromet and Silver's (1987)
general findings that the magmas were derived from two different
sources at different depths. In this regard the work of Putirka (1999) is
informative. He modeled aggregate melts using polybaric partial
melting of mantle rocks from their source to the base of the lithosphere
and found that Sm/Yb and Na/Ti ratios increased with depth of melting
in peridotite, eclogite, and garnet pyroxenite and also with greater li-
thospheric thickness. We plotted both arc and slab failure suites on a
La/Sm vs Sm/Yb diagram (Fig. 6), and the slab failure suites con-
sistently have higher Sm/Yb than arc suites, indicative of initial melting
at greater depths. We believe that the differences between the two
suites are sufficiently consistent, and petrologically significant, that the
diagram provides, in samples with<70% SiO2, a robust way to dis-
criminate between arc and slab failure suites (Hildebrand and Whalen,
2017).

Another feature noted by Gromet and Silver (1987), and by others
more recently in the Coastal batholith of British Columbia (Girardi
et al., 2012), that helps to constrain the petrogenesis of slab failure
magmas is that they generally have minor to negligable Eu anomalies,
which we confirmed as a general case for post-collisional magmas
(Hildebrand and Whalen, 2014b, 2017). The lack of a Eu anomaly on
chondrite normalized RSS plots suggests the absence of residual plagi-
oclase in the source.

4.2. Oxygen isotopes

Oxygen isotopes also help to constrain the origin of the post colli-
sional magmas. In an important regional overview of δ18O from zircon,
quartz, and whole rocks within Sierran plutons, Lackey et al. (2008),
showed that plutons of the post-100Ma Sierran Crest magmatic suite
had δ18Ozircon within, and close to, the range of mantle δ18Ozircon va-
lues. For example, Tuolumne plutons have δ18Ozircon ratios of
6.0%–6.6%, Mount Whitney zircons are 5.67%–5.90%, and other plu-
tons emplaced at 96Ma range as low as 4.21%. The sub-mantle values
presumably represent melting of hydrothermally altered rocks that had
previously interacted with low δ18O meteoric water at high tempera-
ture (see Bindeman, 2008). Overall, the magmas were dominantly
mantle-derived but with some contamination by rocks that had pre-
viously interacted with meteoric water.

Plutonic rocks of the post-100Ma La Posta suite in the Peninsular
Ranges batholith have slightly heavier whole rock δ18O with values
between 8 and 11 (Taylor and Silver, 1978), which Gromet and Silver
(1987) argued were derived from altered oceanic basalts and/or sedi-
mentary rocks. Deep-seated plutonic rocks and their related gneisses in
the southern Sierra have similar δ18O to those of the Peninsular Ranges
and also to Mesozoic pyroxenite xenoliths carried to the surface by
Cenozoic magmatism. When coupled with observed 87Sr/86Sri ~0.705
and positive εNd(0) in the plutons, these observations led Lackey et al.
(2005) to argue that relatively young, hydrothermally altered oceanic
crust was the most plausible source of the magmatism as hydro-
thermally altered, oceanic basalt has whole rock δ18O ~10% (Eiler,
2001; Bindeman et al., 2005). Within the Coast batholith of British
Columbia, plutons in the age range 100–85Ma have relatively primitive
Nd, Sr and Pb isotopic ratios but δ18Oqtz values between 7 and 10%,
which collectively suggest involvement of mafic rocks that underwent
near surface alteration by meteoric water (Wetmore and Ducea, 2009;
Girardi et al., 2012).

Mid-Cretaceous mantle xenoliths carried to the surface by Cenozoic
basaltic volcanoes in the Sierra Nevada have dominantly mantle δ18O
values as expected (Lackey et al., 2008; Ducea, 1998); but some have
negative εNd(0) and 87Sr/86Sri> 0.706 (Fig. 7). When seen in plutonic
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rocks these systematics are generally attributed to assimilation of
continental crust (Kistler and Peterman, 1978; DePaolo, 1980, 1981;
Bateman, 1992; Ducea and Barton, 2007; DeCelles et al., 2009). How-
ever, this may not be the case, as the xenoliths, as well as the Sierran
Crest plutons, have Nd and Sr isotopic values similar to values from
much younger basalts widely erupted in western North America, in-
cluding those of the<17Ma Snake River Plain and the 44–7 Ka Big
Pine volcanic field along the eastern Sierran fault scarps (Fig. 7). We
now examine the implications of the isotopic similarities between the
plutons, xenoliths, and basalts.

4.3. Radiogenic isotopes

Lavas of the Snake River Plain are widely interpreted to represent a
mantle “hotspot” that was overridden by North America as it migrated
westward (Smith et al., 2009; Yuan and Dueker, 2005; Waite et al.,

2006). Because the entire magmatic system—which includes Miocene
and younger rocks of the Columbia Plateau, Oregon High Lava Plains,
the Snake River Plain, and the Yellowstone Plateau— represents one
magmatic system, and because the plume passed beneath exotic ter-
ranes and old Precambrian lithosphere as North America moved west-
ward, Pb, Sr, and Nd isotopes from the westernmost (Steens-Imnaha)
basalts have plume isotopic signatures, whereas those collected farther
east above ancient lithosphere suggest contamination by subcontinental
lithospheric mantle (Hanan et al., 2008). Thus, the effects of sub-
continental lithospheric mantle and crust on the magmas can be as-
certained with high degrees of confidence.

Three-component mixing models, utilizing (1) the oceanic island
basalt–like Steens-Imnaha lava, erupted west of the inferred continental
edge, to represent the plume component, (2) old lithosphere like that of
the Wyoming craton, and (3) younger Paleoproterozoic-like litho-
sphere, show that> 97% of the variability can be accounted for by
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progressive incorporation of older subcontinental mantle lithosphere
(SCLM) into the plume source as it migrated eastward (Jean et al.,
2014). Note that the lower crust beneath the Snake River Plain is old
and radiogenic, with 87/86Sr as high as 0.83 and εNd values ranging
from −20 to −50, as deduced from xenoliths (Leeman et al., 1985),
and so if the deep mantle melts, which contained very low Rb con-
centrations (Camp et al., 2003), interacted with the crust in any ap-
preciable way, it would be readily apparent.

Thus, we infer that the Sr and Nd isotopic ratios of the post-100Ma
plutonic rocks of the Sierra Nevada and Peninsular Ranges batholiths
were derived from old, enriched SCLM by fractional melting. Other
post-collisional suites, such as the 100–85Ma plutons within the Coast
Range batholith of British Columbia have positive εNd and Sri< 0.704
(Girardi et al., 2012; Wetmore and Ducea, 2009) similar to Steens basalt
(Camp and Hanan, 2008), but contain the typical slab failure trace

element signatures (Hildebrand and Whalen, 2017), so apparently do
not have old, enriched SCLM beneath them. Note that in the case of
post-collisional magmatism, the subcontinental mantle typically be-
longs to the lower plate continental margin and not the arc, as the
continental margin is pulled beneath the arc to isolate it from its for-
merly subjacent mantle. Thus, where old cratonic lithosphere is pulled
beneath an arc built on young crust, adjacent arc and slab failure
magmas may have very different isotopic ratios simply because the arc
magmas rose through young arc lithosphere, whereas the younger slab
failure magmas rose through old, enriched lithosphere pulled beneath
the arc just prior to slab failure. Likewise, where both upper and lower
plates are young, they both should exhibit non-radiogenic isotope ra-
tios.

If continental crust is uninvolved in the genesis of Sierran slab
failure melts, as indicated by oxygen isotopes, then this presents a

10 100

10

100

N
b

 (
p

p
m

)

ORG

WPG

Arc

Slab failure

Y (ppm)

0.1

1.0

 10

ORG

WPG

Arc

Slab Failure

0.1 1.0  10

T
a

 (
p

p
m

)

Yb (ppm)

0.1

1.0

N
b

/Y

10

1

10

 50

L
a

/Y
b

G
d

/Y
b

1.0

5.0

0.5
1 10 100

Sr/Y

1

Arc

Arc

Arc

Slab
Failure

Slab
Failure

DMM

DMM

DMM

DMM

DMM

MORB

MORB

MORB

Aegean arc (<0.2 Ma)

Ryuku arc (Quaternary)

Taiwan (0.5-0.2 Ma)

Novarupta-Katmai (1912)

Aniakchak (<9.5 Ka)

Augustine (<15 Ka)

Kluchevskoy (1932-1956)

Avachinsky-Kamchatka (1991)

bulk 
continental
crust

average
La Posta

IAB

IAB

IAB

IAB

OV

OV

OV

OV

tonalite–trondhjemite–granodiorite
>3.5 Ga    3.5-2-5 Ga    2.5-0.54 Ga

Fig. 5. We tested our discrimination plots with trace elements from young arc and slab failure settings for: (A) Novarupta- Katmai from Hildreth and Fierstein (2012);
Aniakchak from Bacon et al. (2014); Augustine from Johnson et al. (1996); Avachinsky from Viccaro et al. (2012); Aegean arc from Bailey et al. (2009); Ryukyu from
Shinjo et al. (2000); Kluchevskoy from Dorendorf et al. (2000); postcollisional lavas (Tsaolingshan and Kuanyinshan) of northernmost Taiwan from Wang et al.
(2004); average compositions of different-aged tonalite-trondhjemite-granodiorite (TTG) suites (Martin et al., 2005); average compositions for the La Posta suite from
Hildebrand and Whalen (2014b); mid-ocean-ridge basalt (MORB), and island-arc basalt (IAB) from Kovalenko et al. (2010). The large stars indicate values for bulk
continental crust from Rudnick and Gao (2003). WPG—within-plate granite; ORG—ocean- ridge granite.

R.S. Hildebrand et al. Tectonophysics 734–735 (2018) 69–88

74



paradox, for if crustal processing does not create the high SiO2 con-
centrations, then it must be a characteristic of the melts arriving in the
crust, yet how can melts rising out of the mantle be more siliceous than
basalt, especially when partial melts of garnet peridotite yield Ti-en-
riched basalts (Walter, 1998; Davis et al., 2011)? One has to look to
mid-oceanic ridge basalt and its metamorphic equivalents, eclogite,
amphibolite, and garnet pyroxenite, for the answer. The main question
is where the MORB and metamorphosed equivalents might reside
during melting? Likely sources include enriched subcontinental litho-
sphere, subducted mid-ocean ridge basalt, rift facies continental crust,
and perhaps basalts formed during rifting (seaward dipping re-
flectors–SDRs), or possibly some combination from each environment.

4.4. Experimental work

The early work by Green and Ringwood was fundamental to our
understanding of phase relations in metabasalt and its ultimate meta-
morphism to eclogite, which they suggested could melt to produce
granodioritic and quartz dioritic melts (Ringwood and Green, 1966;
Green and Ringwood, 1967). Because they established that eclogite was
denser than rocks of the mantle, their work has been essential to all
those who favor foundering as a method to balance the material flux in
and out of arcs. Within our plutonic rocks, the lack of a Eu anomaly
suggests that there was no residual plagioclase in the source. In ex-
periments with gabbro, they found that at pressures> 2GPa and
temperatures> 1100 °C, plagioclase did not coexist with garnet and
pyroxene (Ringwood and Green, 1966; Green and Ringwood, 1967).

In another set of experiments (Rapp et al., 1991), olivine-normative
amphibolite and an alkali-rich basalt yielded minor residual plagioclase
at 16 kbar, but exclusively garnet-clinopyroxene-rutile at 22 kbar and
above. Thus, at depths of> 100 km, there is unlikely to be plagioclase
in eclogite of the descending slab, or metabasalt at the base of, or

within, the lower subcontinental lithospheric mantle.
Rapp et al. (1991) also examined the bulk compositions of melts

generated by vapor-absent melting of natural olivine-normative am-
phibolites, three low-K MORB-like rocks, and an alkali basalt. Resultant
melts produced by 10%–40% melting were tonalitic-trondhjemitic at all
pressures from 8 to 32 kbar and were highly depleted in heavy rare
earth elements (HREEs) with La/Yb of 30–50 when garnet was present
in the residue.

Additional melting experiments by Rapp and Watson (1995) used
four different basaltic starting compositions and they examined changes
in the relative proportions of melt and coexisting residue from 1000 °C
to 1150 °C, over pressures from 8 to 32 kbar. They found highly silic-
eous melts of granitic to trondhjemitic composition at 5%–10% partial
melting at 8–16 kbar, but the residue contained plagioclase. At 32 kbar
and 1100–1150 °C, they found that trondhjemitic-tonalitic, grano-
dioritic, quartz dioritic, and dioritic partial melts resulted from
20%–40% partial melting and left a garnet-clinopyroxene residue.
Thus, they showed that magmas with high Sr/Y and La/Yb could be
produced by 10%–40% melting of partially hydrated metabasalt in the
presence of garnet between 1000 °C and 1100 °C. Although subduction
zones are typically too cool to produce these partial melts, melting of
hot, young oceanic crust near spreading ridges (Peacock, 1996) or
above and adjacent to zones of deep mantle upwelling would satisfy
those conditions.

Direct slab melts should interact with mantle peridotite as they
ascend, and Rapp et al. (1999) studied this experimentally by allowing
oceanic crustal melts to infiltrate and react with peridotite. At nearly
4 GPa and high melt-to-rock ratios, they found that the interaction
produced high Mg# adakites (high Sr/Y and La/Yb), but at melt-to-rock
ratios close to unity, the melts were completely consumed by reaction
with the peridotite. Only when additional heat was added to the system
did melt remain. Trace-element abundances in hybrid slab melts were
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higher than in pristine slab melts because melt was progressively con-
sumed by reaction; however, elemental ratios such as Sr/Y and La/Yb
remained constant. They also showed that 30% melts of hydrothermally
altered MORB closely resemble the trace-element contents of adakites,
except for Zr and Ti, which they attributed to residual accessory phases.
One of their principal conclusions was that slab-derived melts can
metasomatize the overlying mantle peridotite as they are consumed,
which means that, although the mantle mineralogy will control the
overall composition of younger melts, the incompatible trace elements
from the slab will be available to be scavenged from the peridotite by
younger melts.

Experimental data confirm that melting of garnet pyroxenite and
eclogite can produce melts of the requisite composition, but as horn-
blende and biotite are ubiquitous in post-collisional slab failure
magmas, the source melts were hydrous, likely with H2O contents in the
3%–6% range (Sisson et al., 1996). The principle sources for fluids
during slab failure – depending on the precise location of the tear
within the subducted plate – are subducted and hydrothermally altered
MORB, extended continental crust with its sedimentary veneer in-
cluding evaporites, and the thick and extensive, tholeiitic basalt erupted
on the continental lip during rifting (SDRs: for example: Jackson et al.,
2000; Peate et al., 1992; Puffer, 1992).

4.5. Tuolumne intrusive series

Within the Sierra Nevada, several intrusive series, such as the John
Muir, Tuolumne, and Sonora, are included within the Sierran Crest
magmatic suite (Coleman and Glazner, 1998). We selected the
94–84Ma Tuolumne intrusive series (Bateman and Chappell, 1979;
Coleman et al., 2005; Memeti, 2009) for study to shed light on the
progressive generation and modification of melts through time because

we believe that they may provide tests of various competing models.
The Tuolumne intrusive series comprises four distinct intrusions

that young inwards: the 94–92Ma granodiorite of Kuna Crest, the
92–90Ma Half Dome granodiorite, the 88–86Ma Cathedral Peak
granodiorite, and the 84Ma Johnson granite porphyry (Bateman and
Chappell, 1979; Bateman, 1992; Coleman et al., 2004). Originally,
Bateman and Chappell (1979) argued that the compositional zoning
within the series resulted from crystal fractionation of a single volu-
minous influx of magma. However, subsequent isotopic work (Kistler
et al., 1986) ruled out the possibility of relating the compositions to any
sort of fractionation scheme, and U-Pb zircon age determinations de-
monstrated that plutons of the series were emplaced over 10Myr from
94Ma to 84Ma (Coleman et al., 2004). The length of time for empla-
cement ruled out the closed fractionation model and also the two-
component mixing scheme favored by Kistler et al. (1986). Not only are
the three granodioritic plutons unrelated by fractional crystallization or
mixing, but fractionation within each of them was relatively limited
(Paterson et al., 2014), so the overall geochemical variations in the
series probably arose well below the level of emplacement (Coleman
et al., 2012). Because the plutons were emplaced in the same location
one after the other through time, their compositions might reflect
temporal changes in source and/or depth of melting.

In order to evaluate this possibility, we plotted data compiled by
Memeti (2009) from the three granodioritic plutons (Fig. 8). The most
obvious feature of the series is that, except for K2O and Na2O, major
elements define tight arrays on Harker-type plots, although the range of
values for the middle Half Dome granodiorite approach the overall
range of all three plutons combined. Compatible elements, such as V
and Ni, also form linear arrays, whereas incompatible large ionic li-
thophile (LIL) and rare earth elements (REE) vary widely. Both K2O and
Na2O increase with increasing SiO2 but have large ranges in individual
plutons. Ba, Rb and Sr have large ranges and clearly illustrate that the
three plutons simply cannot be related to one another by any sort of
fractionation or mixing scheme. However, the apparent disconnect
between most major elements and the incompatible elements is readily
explained by fractional melting (Wilson, 1989; Shaw, 2007) in each of
the three magma bodies.

Although they have likely been overprinted by assimilation of REE
and Na from the fractional melting of SCLM, the increases in Na/Ti and
Sm/Yb ratios might shed light on deeper processes because higher ra-
tios have been shown to be measures of increased melting depth
(Putirka, 1999). Within the plutons, all values of Sm/Yb are above 2
with most above 2.5 (Fig. 8). Arc magmas typically have Sm/Yb<2,
which reflects their shallower source (Hildebrand and Whalen, 2017).
Based on the increasing Na/Ti and Sm/Yb ratios, the plutons are rea-
sonably interpreted to represent progressive deepening of the source
with time.

Values for 87Sr/86Sri are quite heterogeneous for the two oldest
bodies, especially the Half Dome granodiorite, but increase overall with
time; coincident with the presence of less radiogenic Nd (Fig. 8). The
Half Dome granodiorite has a range of εNd values (> 4 epsilon units) as
great as the other two plutons combined. As noted earlier, the plutons
and younger basalts, such as the Steens and Big Pine lavas, all share
similar εNd and 87Sr/86Sri isotope values. This makes it unlikely that
the major element concentrations of the plutonic magmas were much
modified by interaction with SCLM, as exemplified by the limited vo-
lume assimilated (< 3% total lithosphere) by the much younger deep-
seated plume basalts as they passed through the SCLM (Jean et al.,
2014). Slab failure plutons elsewhere, such as the 100–85Ma plutons of
the Coast plutonic complex of British Columbia (Wetmore and Ducea,
2009; Girardi et al., 2012), have primitive εNd and 87Sr/86Sri values
similar to primitive mantle-derived magmas of the plume generated
Steens basalt (Camp and Hanan, 2008) – but have similar trace element
profiles to slab failure plutons in the Sierra Nevada and Peninsular
Ranges batholiths (Hildebrand and Whalen, 2017). Thus, we infer that
the principal modifications to the rising magmas, as they passed
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through the SCLM, were to radiogenic isotopes and elements with large
ionic ratios (LIL) through the process of fractional melting.

The temporal increase in SiO2 and LIL, coupled with higher Sm/Yb
and Na/Ti ratios, within the Tuolumne intrusive series are mirrored in
other “nested” plutons, such as the Whitney (Hirt, 2007) and the Sah-
wave (Van Buer and Miller, 2010) and could reflect progressive melting
of greater amounts of rifted cratonic margin, with its voluminous vol-
canic veneer, as it sank into the mantle, or possibly lower fractions of
slab melting with time. Increased sodium contents might come from
evaporites of the rifted margin.

Our overall model for the generation of slab failure magmas in-
volves initial melting of metabasalt and gabbro from subducted oceanic
slab at depths> 2Gpa to create siliceous magmas with the diagnostic
trace element patterns, Nb/Y > 0.4, La/Yb > 10, Gd/Yb > 2.0, Sm/
Yb > 2.5, and Sr/Y > 10. As the melts rise through the SCLM they are
contaminated by fractional melting and, if the SCLM is old and en-
riched, they develop isotopic signatures commonly considered to be of
crustal origin.

5. Adakites

Adakites were originally recognized within arcs as peculiar high-
Sr–low Y and high-La/Yb magnesian andesites with low abundances of
heavy rare earth elements (HREE) (Kay, 1978; Defant and Drummond,
1990). Adakites appear to form when the asthenospheric window of a
spreading ridge is subducted and, driven by plate divergence and slab
pull, widens as it descends into the mantle (Thorkelson, 1996). Most
researchers interpret adakites to represent melting of the subducting

slab (Defant et al., 1991, 1992; Yogodzinski et al., 1995; Martin, 1999;
Martin et al., 2005; Gómez-Tuena et al., 2007).

Hildebrand and Whalen (2017) examined the trace element and
isotopic characteristics of adakites related to ridge subduction from
Kamchatka, Japan, the Antarctic Peninsula, southern South America,
Panama, mainland Mexico, Baja California, and the western United
States. They found that most slab window adakitic rocks had trace
element concentrations and ratios similar to slab failure rocks with
mantle-like Sr and Nd isotopic concentrations, except for those of
western North America, which had less radiogenic isotopic composi-
tions typical of the Snake River Plain, Sierran Crest magmatic suite, and
the Big Pine volcanic field. These results support models that invoke
melting of the oceanic slab at depths sufficient for partial melting of
garnetiferous, plagioclase-free rocks to produce the observed trace
element profiles in both adakites and slab failure rocks as well as the
unradiogenic Sr and radiogenic Nd ratios in regions without old, en-
riched SCLM.

In an important study, Bindeman et al. (2005) measured oxygen
isotope compositions in nearly three-dozen adakites from diverse lo-
cations and found them to have calculated δ18O melt values from 6.36%
to 8.17%, slightly higher than MORB. They also found that δ18O cor-
related with Sr/Y and La/Yb, which suggested to them that the entire
oceanic slab was melted, consistent with isotopic results from eclogite
facies metabasalt and gabbro (Putlitz et al., 2000) and eclogite xeno-
liths (Eiler, 2001). Plutons such as those of the La Posta suite with their
elevated δ18O indicates that a larger proportion of the source material
equilibrated with water near the surface, which suggests a higher ba-
salt/gabbro ratio of melting in the subducted slab.
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6. Archean TTG suites

Archean sodic leuco-granitoids, usually termed the tonalite-trondj-
hemite-granodiorite (TTG) suite, have been estimated to represent at
least two thirds of surviving Archean continental crust (Condie, 1981;
Martin, 1994). Recognition of the geochemical similarities between the
Archean TTG series and potential modern equivalents such as adakites
(Martin, 1986, 1987; Defant and Drummond, 1990; Drummond and
Defant, 1990) and high Sr/Y plutonism (Tulloch and Kimbrough, 2003)
spawned an enormous body of literature concerning TTG petrogenesis
and implications for the crustal development of Earth (Drummond
et al., 1996; Martin, 1994, 1999; Martin and Moyen, 2002; Martin et al.,
2005, 2014, and references therein). Key geochemical features of Ar-
chean TTG suites and modern adakites are high La/Yb and Sr/Y values,
which were collectively termed the adakitic signature by Moyen (2009).
Today, most researchers accept that the distinguishing geochemical
features of TTGs and adakites reflect partial melting of mafic protoliths
under garnet-stable, plagioclase-unstable pressure-temperature condi-
tions, but the tectonic setting where this occurred remains controversial
(Condie, 2014). Using concepts developed to explain adakites in
modern arcs, some workers have argued that TTGs formed from partial
melting of garnetiferous oceanic lithosphere beneath arcs (Martin,
1986, 1994, 1999; Drummond and Defant, 1990). Other researchers
suggested that they were generated in thick continental crust similar to
that considered by many workers to exist beneath arcs and Cordilleran
batholiths (Whalen et al., 2002; Nagel et al., 2012; Condie, 2014). Still
others preferred to generate TTGs within, or at the base of, thick ba-
saltic plateaux or crust (Bédard, 2006; Smithies et al., 2009; Willbold
et al., 2009; Van Kranendonk et al., 2007; Johnson et al., 2017).

There are two fundamental problems with the basaltic plateau
model: (1) siliceous rocks from Iceland, commonly considered the best
modern example, do not have the characteristic depletion of HREE and
Y of Archean TTG; and (2) Archean TTG have δ18Ozircon values in the
range of 5.5–6.5%, which indicate some interaction with the hydro-
sphere, and so rule out underplating by relatively dry melts of mantle
plumes (Martin et al., 2010; Condie, 2014). Even if plume-generated-
melting of thick basaltic plateaux could create similar composition
rocks, they still wouldn't match the typical linear, 10–20Myr belts of
TTGs of Archean terranes (see, for example, Percival et al., 2012).

At its core, the “slab-melt” TTG petrogenetic model employs partial
melting of a “conveyer-belt–like” supply of continuously subducted
oceanic crust to generate the preserved voluminous Archean TTG
suites. This model, based on modern plate tec- tonics, implies an on-
going process that occurred at destructive plate margins over extended
time periods, providing continuous upwelling of TTG melt. However, in
portions of Archean cratons where careful geological mapping is sup-
ported by high-precision U-Pb zircon analyses, such as the Wabigoon
portion of the Western Superior craton, entire TTG suites were shown to
have been emplaced over periods of time as short as 2–3m.y. (Whalen
et al., 2002, 2004). These pulses indicate that voluminous TTG mag-
matism formed during short-lived magmatic events or pulses rather
than as products of a long-lived ongoing process, as implied in the
continuous slab-melting model.

In our view, the compositional similarities of rocks that form TTG
suites seem so similar to slab failure suites that a common origin is
warranted. To evaluate this possibility we compiled analyses from the
literature and filtered a huge number of analyses of TTG bodies ob-
tained from various Archean cratons to give us over 400 modern ana-
lyses ranging from 3.8–2.5 Ga of high-alumina TTG with 60–70% SiO2

to compare with Archean arc rocks, as well as a spectrum of
Phanerozoic slab failure rocks. The results are shown in Fig. 9 and there
it is obvious that slab failure and TTG rocks have similar trace element
ratios and consistently plot, independent of age, in the requisite fields
on our discrimination plots.

In addition to the many other experimental results presented earlier,
Rapp et al. (2003) showed experimentally that “partial melting of

hydrous basalt in the eclogite facies produces granitoid liquids with major-
and trace-element compositions equivalent to Archaean TTG, including the
low Nb/Ta and high Zr/Sm ratios of ‘average’ Archaean TTG”. We plotted
data from just over 300 samples from post-collisional 100–84Ma plu-
tons of the Peninsular Ranges and Sierran batholiths, as well as data
from over 400 TTG samples ranging in age over the interval 3.8–2.5 Ga
from our compiled database on a Nb/Ta versus Zr/Sm plot (Fig. 10).
Although the Archean samples are widely distributed, which suggests
compositionally diverse sources or possibly alteration, the bulk of
samples from all three groups plot in a moderately tight cluster along
with a variety of modern marginal basin basalts and much older bo-
ninites. For the most part, the samples do not fall within the field of
modern MORB and rift-related tholeiites such as the Paraná. The Cre-
taceous geology of the Peninsular Ranges-Guerrero superterrane is
readily interpreted to indicate that the 100–84Ma slab failure magmas
originated when a marginal basin – formed after the Neocomian Ne-
vadan collision and open for about 30Myr – closed at 100Ma
(Hildebrand and Whalen, 2014b, 2017). Based on kindred geology and
temporal relations, a comparable setting is inferred for the Sierra Ne-
vada as well (Hildebrand and Whalen, 2017).

7. Plate tectonics

The similar geochemistry of Phanerozoic slab failure and slab
window magmas to Precambrian TTG suites suggests to us that the
magmas were generated by a similar process, but, as pointed out by
Korenaga (2008), even if plate tectonics were active during the early
Archean, it might not resemble modern plate tectonics. In fact, whether
or not plate tectonics, as we know it today, was even active during the
Precambrian is contentious, with some workers arguing that it started
as recently as the Neoproterozoic (Stern, 2005, 2007), and others as far
back as the Hadean (Harrison, 2009). Most other models fall between
these two extremes (Arndt, 2013, Table 5.1; Korenaga, 2013, Fig. 1).
Here, we focus on the process of subduction of oceanic lithosphere, as
during the Phanerozoic it has been a diagnostic feature of plate tec-
tonics (Cawood et al., 2006) and generates both arc and slab failure
magmatism.

There are two fundamental methods available to resolve the con-
undrum: theoretical modelling, and direct study of geological features.
Theoretical modelling (Korenaga, 2013; Hynes, 2014) has demon-
strated that even though the mantle was perhaps 200 K hotter than
today, plate tectonics was feasible and probable during the Archean,
although oceanic plates were perhaps about 3 times thicker then (Sleep
and Windley, 1982); and plate movements were not faster as commonly
surmised, but instead, more sluggish, so that when coupled with their
greater thickness and buoyancy, subducting plates were older than
today (Korenaga, 2006, 2008; van Hunen and Moyen, 2012). Geolo-
gical features commonly used to support Archean plate tectonics in-
clude the presence of orogenic belts (Pease et al., 2008; Percival et al.,
2012), supercontinents (Hoffman, 1997), continental margin prisms
(Bradley, 2008), paired metamorphic belts (Brown and Johnson, 2018),
volcanogenic massive sulfide deposits (Mosier et al., 2009), and con-
stant tholeiitic index of basalts through time (Keller and Schoene,
2018). To these global features, we add the presence of arc, slab failure
and slab window rocks as outlined here.

If oceanic crust was thicker in the past and subducting plates older,
absent some form of crustal delamination (Hoffman and Ranalli, 1988),
it is possible that following break off that there were greater quantities
of oceanic crust to melt and so slab failure magmatism might have been
more voluminous than during the Phanerozoic. Similarly, if the SCLM
hadn't developed prior to 3.5 Ga and was only weakly developed prior
to 2.9 Ga, as suggested by Herzberg and Rudnick (2012), then it is
possible that during collisions, the thicker and older oceanic slabs were
able to subduct significantly more continental crust than after the de-
velopment of strong and thick continental lithosphere (Korenaga,
2013). As rifted margins, with their abundant evaporites and volcanic
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rocks, are scarce in Phanerozoic collisional orogens, presumably due to
their subduction (Hildebrand and Bowring, 1999), it might be that prior
to the stabilization of continents by a thick SCLM root, that entire
passive margins, or even continents, were recycled into the mantle.
Additionally, the warmer mantle and paucity of SCLM might have re-
duced thermal subsidence of rifted margins and accomodation space for
passive-margin sedimentation (Hynes, 2008) so that passive margins
might be weakly developed. Also due to increased mantle temperatures
higher MgO contents of the Archean oceanic crust might rule out, on
compositional grounds alone, the possibility of forming blueschists
(Palin and White, 2015).

Given the theoretical modelling, direct study of Archean geological
features, and the overall similarity between Archean and Phanerozoic
slab failure and arc rocks, we find no compelling reason to invoke a
mechanism other than plate tectonics to explain the origin of TTG.
Their kindred geochemistry through time suggests to us that subduction
and slab failure have been active processes on Earth since at least
3.8 Ga, the age of our oldest samples. Based on trace elements and
radiogenic isotope data from Acasta gneisses in Canada (Bowring and
Housh, 1995; Bowring and Williams, 1999) and Jack Hills detrital
zircons from Australia (Wilde et al., 2001), all of which indicate the
presence of continental crust, I-type magmatism, and probably oceans,

in the Hadean, these processes might even have been active before
4.0 Ga (Harrison, 2009; Burnham and Berry, 2017).

8. Crustal growth and recycling

Our study of post-collisional, slab failure plutons indicates that they
are derived from the mantle, initially from slab melting at depths
greater than plagioclase stability, and later as the melts interact with
SCLM, especially if it is old and enriched. Not only does our model for
slab failure resolve the crustal composition paradox, but because the bulk
of slab failure magmatism contains 60–70% SiO2, it also negates the
need for large volumes of residues/cumulates to magically vanish be-
neath arcs. Furthermore, based on similar geochemistry, our synthesis
indicates that slab failure is, and has been, a major component of crustal
growth, along with arc magmatism, possibly ranging back to at least
3.8 Ga. Alternative models require an entirely different and un-
recognized tectonic process.

Whereas slab failure magmatism, along with arc magmatism, comes
from the mantle and together created the bulk of continental crust, bulk
crustal estimates for every element or oxide (Rudnick and Gao, 2003)
should fall on a mixing line composed of arc and slab failure analyses
for that element or oxide. For the most part, the Rudnick and Gao
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estimates do fall on the mixing line (Fig. 11), but there are dis-
crepancies for a few important elements such as MgO and Al2O3 (see
Fig. 11 Supplemental). Where the estimated bulk crustal values do not
fall on the line, then the value for the bulk crustal concentration of that
element or oxide might be better approximated by adjusting it to fit the
mixing line. As an initial test, we held the SiO2 content steady at the
value suggested by Rudnick and Gao (2003); examined many major and
trace elements; and – although a more detailed and rigorous analysis is
needed – believe that there might be merit to our approach (Fig. 11).

In a dynamic contribution in which he argued for early differ-
entiation of Earth, Armstrong (1991) pointed out that the subject of
crustal recycling is relatively new to geoscientists, as prior to the plate
tectonic revolution of the late 1960's, the geologic consensus was that
the continents, as well as the atmosphere and hydrosphere, developed
progressively (for example, Rubey, 1951). Following the acceptance of
subduction as a mechanism for recycling oceanic lithosphere, a few
researchers modeled subduction of continental crust attached to
oceanic slabs (Bird et al., 1975; Molnar and Gray, 1979), but the subject
never caught on with geologists and languished. As geologists became
more comfortable with plate tectonics they cautiously began to con-
sider that small amounts of continental crust, mainly in the form of
sediments distributed on the seafloor, could be recycled into the mantle
(McLennan, 1988; White, 1989). Over the ensuing decades, arguments
simmered over how much sediment could reasonably be eroded and
subducted, with the bulk of researchers favoring limited recycling
(Condie, 1989; Reymer and Schubert, 1984), and only a few (von
Huene and Scholl, 1991) arguing for recycling of much larger volumes.

Hildebrand and Bowring (1999) noted that within Wopmay orogen,
the western edge of the Archean Slave craton terminated abruptly, and
was coincident with the palinspastically restored western edge of the
Paleoproterozoic platform terrace and a suite of syn-collisional intru-
sions, which suggested to them that the majority of rift facies rocks,
including attenuated continental crust, were subducted during collision
and consequent slab break-off. They noted that several collisional
orogens contained little in the way of rift facies volcanic and evaporitic

rocks and so hypothesized that slab failure might be a general process
for recycling significant volumes of continental crust. More recently,
detailed studies of deeply metamorphosed xenoliths carried to the
surface in younger volcanic eruptions have demonstrated that con-
tinental crust is subducted to great depths (Chopin, 2003; Chin et al.,
2013; Shaffer et al., 2017). Based on mass balance calculations, a
number of researchers have suggested that even more voluminous
quantities of crust were subducted during the Indo-Eurasian collision
(Replumaz et al., 2010; Ingalls et al., 2016), although it unclear what
amount will rebound to the surface or relaminate to the base of the
crust (Hacker et al., 2011) in the future.

Nevertheless, the discussion above indicates that huge amounts of
continental crust are recycled during collisions because it is attached to
dense oceanic lithosphere that is gravitationally returned into the
mantle. This is perhaps the largest contributor to crustal recycling, but
is commonly ignored in mass balance calculations. Although it is im-
possible to accurately measure the volume of all continental crust
subducted or the volume of slab failure magmatism, a quick, “back-of-
the-napkin” calculation suggests that the two are approximately equal.

Consider that the length of continental rifted margins subducted
must approximate the length of slab failure during arc-continent colli-
sion, unless slabs are left dangling, which is not observed. If slab failure
magmatism occurs over most of the crust in the 35 km thick southern
Sierra Nevada, as suggested by Lackey et al. (2005), then the thickness
of slab failure rocks would be larger than the thickness of extended
crust. If large amounts of crustal stretching (Yakovlev and Clark, 2014)
are invoked, say 100%, there would be twice the quantity of slab failure
magmas emplaced; but as the width of intense slab failure magmatism,
as estimated from the Sierras and Peninsular Ranges, is about 50 km,
the average width of rifted margin recycled into the mantle would only
have to be 100 km for the magmatism and subducted crust to roughly
balance each other. Yet rifted margins are generally even wider, com-
monly 200–400 km (Klitgord et al., 1988; Bassi et al., 1993; Keen and
Dehler, 1997; Jackson et al., 2000) so the amount of subducted crust
could be much larger. While it is impossible to quantify the amount of

1 10 100
0

10

20

30
N

b
/T

a

Zr/Sm
1000

30% melt reacted
with peridotite

AB-1

eclogitic 
residue 
of AB-1

MORB

residual
eclogite

Paraná
basalts

95-82 Ma Tuolumne n=171

100-84 Ma La Posta n=133

3.8-2.5 Ga TTG n=432

Sierran garnet
pyroxenites

marginal basin basalts
Paleozoic & Archean

boninites

5

10

Marianas trough

West Philippine basin

Fig. 10. Zr/Sm vs Nb/Ta ratios (after Rapp et al., 2003) of
post-100Ma slab failure rocks from the Peninsular Ranges
and Sierran batholiths, Archean TTG, a variety of marginal
basin, MORB, and rift basalts. Compositions for AB-1, its
eclogitic residue, 5 and 10% partial melts and experi-
mental TTG liquids formed by 30% melting of AB-1 and
mantle-hybridized (with peridotite) equivalents of the
TTG-liquid at 30% melting (from Rapp et al., 1999). Also
plotted are a variety of pyroxenites and eclogites inter-
preted to represent Sierran and Archean TTG residues
(Ducea and Saleeby, 1998; Rapp et al., 2003). Sources of
data for TTGs as in Fig. 8.

R.S. Hildebrand et al. Tectonophysics 734–735 (2018) 69–88

80



0

5

10

15
M

g
O

0

5

10

15

C
a

O

50 60 70 80

SiO

frff ar ctit onatitt on

frff arr ctitt onatitt on

Aleutian
island arc

M
g

O
C

a
O

50 60 70 80

0

5

10

15
Oregonian Sahwave suite

Oregonian Tuolumne suite

Oregonian Mt. Whitney suite

Oregonia Peninsular Ranges

Oregonian & Laramide of

Cascades & Helena Salient

0

5

10

15Bulk continental crust

Aleutians (oceanic crust)

Marianas-Izu-Bonin (oceanic)

Avachinsky-Kamchatka (1991)

Novarupta-Katmai (1912) 

Aniakchak (<9.5 Ka) 

Aegean arc (<0.2 Ma)

Augustine (<15 Ka) 

Ryuku arc (Quaternary)

NE Honshu (Quaternary)

Cascades (Pleistocene-Holocene)

Peninsular Ranges (>60 Si0 )

Peninsular Ranges arc (<60 Si0 )

Arc magmatism

Fig. 11. We plotted major-oxide contents of samples from both our arc and slab failure reference suites on Harker-type variation diagrams. On these plots, most arc
analyses fall above and to the left of estimated bulk continental crust of Rudnick and Gao (2003), whereas most slab failure rocks plot below and to the right,
suggesting that continent crust is created by a mixture of arc and slab failure magmatism, as indicated on the previous plots utilizing trace elements and ratios. Note
that the estimated MgO content for bulk continental crust is located slightly above and to the right of both arc and slab failure trends, so if our mixing model is
correct, then perhaps a better value for bulk crustal MgO content would be about 3 wt%. See Supplementary Data for additional elements.

Age (Ga)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

P
a

n
g

e
a

G
o

n
d

w
a

n
a

R
o

d
in

ia

N
u

n
a

K
e

n
o

r

100,445 detrital zircons

Granulite facies

metamorphism

Eclogite-granulite

metamorphism

HP & UHP

metamorphism

Supercontinent

amalgamation

2000

1500

1000

500

0

G
ra

d
ie

n
t (˚C

/G
P

a
)

1500

1000

500

0

4000

3000

2000

N
u

m
b

e
r

Fig. 12. The crystallization ages of> 100,000 detrital
zircons coupled with ages of various types of meta-
morphism through geologic time (modified from
Hawkesworth et al., 2016). The origins of the peaks and
valleys on this plot are contentious, largely because
they are difficult to interpret using crustal growth
models where the bulk of crust is created by arc mag-
matism as that is a continuous process and would not
lead to the observed peaks and valleys. Most workers
(see text) interpret the peaks as some sort of “pre-
servation” peaks, where crust is sequestered from sub-
sequent recycling because it was isolated from younger
collisions and recycling. However, they are precisely
what one would expect if considerable quantities of
continental crust are made from slab failure magma-
tism, as we argue here, for the peaks coincide broadly
with periods of supercontinent assembly (labeled in
gray fields), which require collisions and resultant slab

failure magmatism. We conclude that the peaks were generated by slab failure and that continental crust is dominantly made from both arc and slab failure
magmatism. HP- high pressure; UHP—ultrahigh pressure.

R.S. Hildebrand et al. Tectonophysics 734–735 (2018) 69–88

81



crust recycled into the mantle as much happens beneath the surface out
of view, the quantity of sediment accumulated on the ocean floors
(Scholl and von Huene, 2007, 2009), as well as potentially huge
amounts of continental crust subducted during collisions, indicates that
voluminous amounts of continental crust are recycled into the mantle.
This suggests to us that Armstrong's (1981) model for continental
growth, in which the bulk of crust was created early in Earth history
and has been recycled through time, is most likely to be correct.

9. Detrital zircons and crustal growth

One of the more useful developments over the past few decades has
been the ability to rapidly date single zircon grains in situ (Jackson
et al., 1992; Fryer et al., 1993). This led to an overwhelming number of
sedimentary provenance studies utilizing dated detrital zircons (for
example: Dickinson and Gehrels, 2003). Several workers have used
sands from large pan-continental rivers in attempts to constrain the
crustal formation ages of continents (Rino et al., 2004; Iizuka et al.,
2005; Belousova et al., 2010; Condie et al., 2011), whereas others have
compiled extensive databases containing over 100,000 detrital and
magmatic zircons (Condie et al., 2009; Hawkesworth et al., 2010,
2016). All of these workers noted concentrations, or peaks, of U-Pb
zircon ages (Fig. 12) that coincided broadly with periods of known
orogeny on a given continent and more broadly, supercontinental as-
sembly (Nance et al., 1988; Nance and Murphy, 2013). The consensus
among researchers, armed with certainty that the bulk of continental
crust was formed by arc magmatism, was that the peaks were pre-
servation peaks formed as collisions sequestered juvenile and reworked
crust from recycling (Condie et al., 2011; Hawkesworth et al., 2009,
2016) because at that time the amount of new crust formed during
collisions was thought to be very small (Stern and Scholl, 2010).

Our slab failure model not only provides a new way to look at how
and when crust is formed; but also provides an actualistic process to re-
interpret the peaks in plots of detrital zircons and metamorphism versus
age, previously interpreted to represent preservation peaks (Cawood
et al., 2013; Hawkesworth et al., 2009, 2016; Condie et al., 2011). In
our model, the peaks, which, as is widely recognized, coincide broadly
with periods of supercontinent assembly, form because they are periods
of increased collision and hence, increased slab failure magmatism.

For the most part all of the rocks that we interpret to be products of
slab failure derived from the mantle were previously considered to be
the products of crustal assimilation and recycling, based in large part on
radiogenic isotope compositions. Instead, the evolved Nd and Sr iso-
topes common to some slab failure suites, such as the Peninsular Ranges
and Sierran batholiths involved assimilation by fractional melting of
old, enriched SCLM as they ascended. Thus, it may be impossible to
utilize radiogenic isotopes, such as Nd and Hf (Condie et al., 2011),
which depend on a homogeneous mantle, to accurately infer whether a
given pluton is juvenile or formed from crustal recycling – at least in
regions underlain by old and enriched SCLM. Radiogenic isotopes are
commonly used to determine model ages for continental growth, but, as
pointed out by Korenaga (2013), a hotter mantle implies less vigorous
convection than today such that mantle mixing must also have been
much diminished. Thick oceanic lithosphere and slow convection could
create a heterogeneous mantle that would produce unreliable model
ages.

10. Conclusions

1. Our geochemical compilation and evaluation of Cretaceous bath-
oliths in the North American Cordillera indicate to us that most are
not the products of arc magmatism, but instead are post-collisional
products of slab failure.

2. On the basis of trace elements, isotopic studies, and comparison
with much younger basalts of western North America, we conclude
that the bulk of the batholithic magmas were derived by melting of

subducted oceanic crust at greater depths than magmas of arc ter-
ranes, and then modified by fractional melting as they rose through
old, enriched subcontinental mantle lithosphere.

3. Because we found that most of the batholiths were not generated by
arc magmatism as commonly believed; but instead originated from
the mantle during the waning stages of collision and consequent slab
failure, and because they typically have silica> 60%, we assert that
they are the missing link in the formation of continental crust.

4. Cordilleran slab failure magmas are compositionally similar to to-
nalite-trondhjemite-granodiorite (TTG) suites as old as 3.8 Ga,
which, when combined with evidence for long-active arc magma-
tism, lead us to opine that slab failure and plate tectonics have been
active for most of Earth history.

5. Compiled arrays of detrital zircons show episodic peaks that coin-
cide with periods of supercontinent amalgamation. Because geolo-
gists hypothesized that arc magmatism produced the bulk of crust
and was incapable of producing large bursts of crustal growth, the
peaks were generally interpreted as crustal sequestration and pre-
servation peaks. In our model of slab failure, the peaks are readily
interpreted to represent new continental crust generated by slab
failure during the collisions that formed the supercontinents.

6. The dearth of rift facies basalts and evaporites in many collisional
orogens implies that during collisional slab failure, most of the ex-
tended continental crust and overlying rift facies rocks are sub-
ducted. Because the total volumes of recycled continental crust are
so large, we favor Hadean whole-earth-differentiation models over
progressive growth models for the development of continental crust.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.tecto.2018.04.001.
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