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Themid-Cretaceous Peninsular Ranges orogeny: a new slant on
Cordilleran tectonics? I: Mexico to Nevada1

Robert S. Hildebrand and Joseph B. Whalen

Abstract: The Peninsular Ranges orogeny occurred during the mid-Cretaceous at �100 Ma and affected rocks from southern
Mexico to Alaska. The event resulted from the closing of an Early Cretaceous marine arc trough, named the Bisbee–Arperos sea-
way in Mexico and Arizona, and the Cinko Lake arc trough in the Sierra Nevada. The trough was an ocean that formed after the
Late Jurassic – Early Cretaceous Nevadan orogeny and associated post-collisional magmatism. It was open for �40 million years
and closed by westward subduction. Here, we focus initially on the most complete cross section, located in southwestern Mexico,
where a west-facing Albian carbonate platform, with subjacent siliciclastic rocks built on the western margin of North America,
was pulled down into a trench at 100 Ma, buried in hemipelagic mud and Cenomanian flysch, then overthrust from the west
by rocks of the 140–100 Ma Santiago Peak – Alisitos arc and its substrate, the Guerrero Superterrane, which collectively document
westerly subduction. This tectonically thickened collision zone was exhumed and intruded by 99–84 Ma distinctive post-
collisional tonalite–granodiorite plutonic complexes, all with Sr/Y> 20, Sm/Yb > 2.5, Nb/Y> 0.4, and La/Yb > 10. These geochemical
features are typical of slab failure, not arc magmas. The post-collisional plutons, previously considered to represent arc flare-ups,
were derived from melting of the descending slab following arc-continent collision. Remnants of the arc, basin, related east-
vergent 100 Ma thrusts, flexural foredeep, and 99–84 Ma slab failure plutons are traced from the Peninsular Ranges, through
the Mojave Desert to the Sierra Nevada where similar rocks, relations, and ages occur. Along the western, back-arc, side of
the orogen after collision and slab break-off, but during exhumation, east-dipping reverse faults with >10 km of east-side up
movement shed 100–85 Ma plutonic and other debris westward from the hinterland into troughs such as the Valle and Great
Valley. We extend our synthesis northward, from west-central Nevada to Alaska, in Part II.

Key words: orogeny, North American Cordillera, arc magmatism, arc-continent collision, slab failure magmatism, Peninsular
Ranges orogeny.

Résumé : L’orogenèse des chaînes péninsulaires s’est produite durant le Crétacé moyen, vers 100 Ma, et a touché des roches allant
du sud du Mexique à l’Alaska. Elle est le résultat de la fermeture d’une fosse d’arc marine d’âge crétacé précoce, appelée le bras
de mer Bisbee–Arperos au Mexique et en Arizona et la fosse de l’arc de Cinko Lake dans les Sierra Nevada. La fosse était un océan
formé après l’orogenèse névadienne d’âge jurassique tardif à crétacé précoce et le magmatisme post-collision associé. Elle est
demeurée ouverte pendant �40 millions d’années et s’est refermée par subduction vers l’ouest. Nous nous concentrons dans un
premier temps sur la coupe la plus complète, située dans le sud-ouest du Mexique, où une plateforme carbonatée albienne faisant
face à l’ouest, avec des roches silicoclastiques sous-jacentes accumulées sur la marge occidentale de l’Amérique du Nord, a été
attirée dans une fosse à 100 Ma, ensevelie par des boues hémipélagiques et un flysch cénomanien, puis charriée vers l’est par des
roches de l’arc de Santiago Peak – Alisitos de 140–100 Ma et son substrat, le superterrane de Guerrero, qui documentent collective-
ment une subduction vers l’ouest. Cette zone de collision épaissie tectoniquement a été exhumée et recoupée par des complexes
plutoniques à tonalites-granodiorites post-collision distinctifs de 99–84 Ma qui présentent tous des rapports Sr/Y > 20, Sm/Yb >

2,5, Nb/Y> 0,4 et La/Yb> 10. Ces caractéristiques géochimiques sont typiques desmagmas de rupture de plaque et non des magmas
d’arc. Les plutons post-collision, auparavant considérés représenter des sursauts de magmatisme d’arc, sont dérivés de la fusion de
la plaque descendante dans la foulée de la collision arc-continent. Des restes de l’arc, du bassin, de chevauchements vers l’est reliés
de 100 Ma, de l’avant-fosse formée par flexion et de plutons associés à la rupture de la plaque de 99–84 Ma peuvent être suivis des
chaînes péninsulaires au désert du Mojave et jusque dans les Sierra Nevada, où de roches, relations et âges semblables sont
observés. Le long du côté ouest d’arrière-arc de l’orogène après la collision et la rupture de la plaque, mais durant l’exhumation,
des failles inverses à pendage vers l’est montrant >10 km de déplacement du bloc est vers le haut ont évacué vers l’ouest des débris
plutoniques de 100–85 Ma et d’autres débris de l’arrière-pays jusque dans des fosses comme la Valle et la Grande vallée. Dans la
deuxième partie, nous élargissons notre synthèse vers le nord, du centre-ouest du Nevada jusqu’en Alaska. [Traduit par la Rédaction]

Mots-clés : orogenèse, cordillère nord-américaine, magmatisme d’arc, collision arc-continent, magmatisme de rupture de
plaque, orogenèse des chaînes péninsulaires.
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It ain’t what you know that gets you into trouble. It’s what you
know for sure that just ain’t so.

—Mark Twain

Introduction
In 1969, Warren Hamilton published two seminal papers in

which he inferred — based in part on the Cenozoic volcanic belt
of the Andes — that thousands of kilometres of oceanic litho-
sphere were swept against, and subducted beneath, western
North America to generate the great Mesozoic batholithic belt
and the ensimatic and chaotic Franciscan Formation (Hamilton
1969a, 1969b). At about the same time, Dickinson (1970) noted
the similarity of ages across California and so linked strongly
deformed rocks of the high-pressure, low-temperature Francis-
can complex with sedimentary rocks of the Great Valley Group
and plutons of the Sierran-Klamath batholith as a trench fill –
forearc basin – arc batholith tectonic association (Fig. 1). This con-
cept quickly evolved into amore generalized hypothesis in which
the trench fill – forearc basin – batholithic assemblage, inter-
preted to be the products of eastward subduction beneath west-
ern Laurentia, had an associated fold-thrust belt, located well to
the east, with mostly westerly dipping thrust faults developed in
heated retro-arc crust, and an adjacent, but even more easterly,
foreland basin (Burchfiel and Davis 1972; Armstrong and Dick
1974; Dickinson 1976). A half century later, the essence of this
model is still in vogue and rarely challenged, so the notion of
eastward subduction beneath North America — especially for
the great batholithic belts of the Sierra Nevada, Peninsular
Ranges, and Coast plutonic complex — has become a formidable
paradigm.
Although several contributions have challenged this paradigm

(Moores 1970; Mattauer et al. 1983; Chamberlain and Lambert 1985;
Lambert and Chamberlain 1988; Johnston 2008; Hildebrand 2009,
2013; Hildebrand andWhalen 2014a, 2014b, 2017; Hildebrand et al.
2018), they were, in many cases, broad syntheses covering several
orogenies through time and so these ideas failed to generate trac-
tion within the Cordilleran community. In the aftermath of the
recent kerfuffle about the polarity of subduction in the northern
Cordillera (Sigloch and Mihalynuk 2020; Pavlis et al. 2020a,
2020b), it seemed to us worthwhile and timely to describe a little
known, mid-Cretaceous orogeny that can be traced along the
length of the North American Cordillera from southern Mexico to
Alaska, and perhaps beyond, as it provides evidence on the polar-
ity of subduction in the northern Cordillera. We call it the Penin-
sular Ranges orogeny after the region where we first recognized it
and because the most-complete cross sections of the orogen are
exposed there and in adjacent Mexico.
Although we have argued that other orogenies within the Cor-

dillera involved eastward-facing arcs, we focus on the Peninsular
Ranges orogen because it entailed several of the world’s most im-
pressive Cordilleran type batholiths, which, for over 50 years,
have been taken as proof-positive evidence for eastward subduc-
tion beneath North America. We approach the overall geology of
the orogen from south to north, and our goal is to demonstrate
why we find the long-ingrained hypothesis for eastward subduc-
tion flawed and untenable.

The Peninsular Ranges orogen in its type area
In Southern and Baja California, the largely chaparral-covered

mountains expose remnants of the Early Cretaceous Santiago
Peak – Alisitos arc terrane, comprising shallow-marine clastic
and carbonate sedimentary rocks, deep-water turbiditic fan
deposits, basaltic to rhyolitic volcanic rocks, and 128–99 Ma
calcic, epizonal intrusions ranging from gabbro to granite (Allison
1974; White and Busby-Spera 1987; Almazán-Vásquez 1988a,
1988b; Johnson et al. 2003; Wetmore et al. 2005; Busby et al. 2006;
Herzig and Kimbrough 2014; Clausen et al. 2014; Morris et al.

2019). In California, the basement to the volcano-sedimentary
cover is dominantly composed of metamorphosed and deformed
Jurassic to Triassic metaturbidites, migmatitic schists, gneisses,
and granodioritic plutons, but farther south on the Baja Penin-
sula of Mexico, carbonates and quartzites of Paleozoic age also
occur (Shaw et al. 2003; Todd 2004; Gastil and Miller 1981; Gastil
et al. 1991; Gastil 1993). Near San Diego, an uppermost Jurassic
succession of marine volcaniclastic rocks, collectively named the
Peñasquitos Formation, was folded, in places even overturned,
prior to deposition of the Santiago Peak rocks (Kimbrough et al.
2014). To the south in Baja California (Fig. 2), arc successions over-
step several subterrane boundaries within the Guerrero superter-
rane (Centeno-García et al. 2008), and after Cenozoic opening of
the Gulf of California is restored, form a continuous lithostrati-
graphic unit onto the mainland in Zihuatanejo (Centeno-García
et al. 2011; Duque-Trujillo et al. 2015). Thus, the arc formed atop
and intruded rocks of the Guerrero superterrane as noted by
Dickinson and Lawton (2001a).
The intrusions, dated at 128–99 Ma (Todd et al. 2003; Wetmore

et al. 2005; Premo et al. 2014; Shaw et al. 2014), were informally
termed the Escondido plutons (Clausen et al. 2014) whereas we
called the same bodies, the Santa Ana suite (Hildebrand and
Whalen 2014b). These plutons are both normally and reversely
zoned, isotropic to foliated, locally protomylonitic, sheeted in-
trusive complexes, varying in composition from tonalite through
quartz diorite and granodiorite to leucomonzogranite, locally
with abundant wall rock screens and mafic inclusions, and con-
taining varying proportions of mafic enclaves (Todd et al. 2003;
Todd 2004).
Morton et al. (2014) noted that the westernmost intrusions are

isotropic whereas those farther east are foliated, so that there is a
megascopically visible deformation gradient from west to east,
especially evident in enclaves. In the east, cumulate layering in
gabbroic plutons is now mostly steeply dipping; intrusive con-
tacts are folded, in many places isoclinally, along with their wall
rocks. The mineral foliation is steep and commonly transects
external contacts, and dykes of one pluton within another are
isoclinally folded (Todd and Shaw 1979).
In Baja California, large pre-100 Ma plutons are also strongly

deformed with concordant contacts, transecting cleavage, and
folded wallrocks (Murray 1979; Johnson et al. 1999, 2003). Some
bodies there were recumbently folded (Johnson et al. 2002). Over-
all, the data provide compelling evidence that intrusions of
the Santiago Peak – Alisitos arc are complexly folded sills or sheets
(Hildebrand andWhalen 2014b).

Age of deformation
Premo and Morton (2014) examined a variety of rocks in the Pe-

ninsular Ranges where they found and dated zircon in a pre- to
syn-metamorphic diorite dyke, which yielded an age of 103.3 6
0.7 Ma. They also dated zircon in a post-metamorphic pegmatite
dyke to be 97.53 6 0.18 Ma, which they interpreted to have been

Fig. 1. Cartoon illustrating the fundamental western triad of the
Sierran paradigm. [Colour online.]
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emplaced soon after metamorphism. Additionally, they dated
more than 30 hornblende separates and determined that meta-
morphism took place at or before 100.1 6 0.6 Ma. These age data
are consistent with data collected farther south in the Sierra de
San Pedro Mártir of Baja California, where the age of the defor-
mation is tightly constrained by plutons. There, 100 Ma gabbro,
as well as a 101 Ma gabbro–tonalite–trondhjemite body, are com-
positionally linked to the arc, strongly deformed, and folded
(Johnson et al. 2002; Alsleben et al. 2008; Schmidt et al. 2009)
whereas the post-deformational Sierra San Pedro de Mártir intru-
sive complex yields U–Pb zircon ages as old as 96 Ma (Gastil et al.
2014; Ortega-Rivera et al. 1997). Thus, we consider the deforma-
tional age of the arc rocks to be tightly constrained at 100 Ma,
roughly coincident with the Albian–Cenomanian boundary (Cohen
et al. 2013).

Bisbee–Arperos seaway
The Santiago Peak – Alisitos arc developed along the western

margin of an elongate trough or seaway, termed the Bisbee–

Arperos seaway, after the transborder Bisbee basin and the Arperos
basin farther south, which we interpret to have been parts of the
same basin (Hildebrand andWhalen 2014b). The Bisbee–Arperos ba-
sin developed during rifting of the western part of North America
following the�153Ma Nevadan orogeny and a younger Early Creta-
ceous event, possibly as young as about 140Ma.
In southern Arizona, coarse clastic sedimentation and eruption

of bimodal volcanic rocks in the Bisbee basin were traditionally
considered to have started at around 150 Ma, following Early to
mid-Jurassic arc magmatism (Bilodeau et al. 1987; Krebs and Ruiz
1987; Lawton and McMillan 1999; Dickinson and Lawton 2001b).
However, the oldest sedimentary rocks within the basin were
recently shown by detrital zircon studies and dating of interca-
lated volcanic rocks to have been deposited between 136 and
125 Ma (Peryam et al. 2012). Within the Bisbee Basin, the lowermost
clastic rocks have bimodal northeast–southwest paleocurrents
and reflect shelf, lagoonal, tidal flat, and fluvial environments
(Klute 1991), but pass stratigraphically upwards into an eastward-
transgressive sequence of fining-upwards fluvial to shallow ma-
rine deposits (Peryam et al. 2012). A recent stratigraphic, detrital

Fig. 2. Sketch map illustrating key geological units of the Peninsular Ranges batholith and Aptian–Albian volcano-sedimentary rocks of
the Alisitos – Santiago Peak arc, various terranes of the Guerrero superterrane, and Albian carbonate platforms, mostly located west of
the younger Laramide suture and its related fold-and-thrust belt. The Peninsular Ranges batholith continues the length of Baja California,
as indicated by a conspicuous aeromagnetic anomaly (Langenheim et al. 2014), but the batholith is buried by younger volcanic rocks
south of the state line. Red dots represent drilled and dated core from La Posta plutons (Duque-Trujillo et al. 2015). Rocks of similar age
and lithology to those of the Peninsular Ranges batholith crop out in Zihuatanejo (Centeno-García et al. 2011). Westward-facing Albian
carbonate banks of the Sonora and Guerrero–Moreles platforms were pulled westward beneath rocks of the Guerrero superterrane at
100 Ma during closure of the Bisbee–Arperos seaway. Box labeled “TP” shows location of Fig. 5. [Colour online.]
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zircon, and provenance study of the basal siliciclastic unit in the
basin, the Morita Formation, determinedmaximum depositional
ages (MDAs) for the lower part of the unit to range from 131 to
125 Ma depending on the location (González-León et al. 2020). The
overlying carbonate platform, known in northern Mexico as the
Sonoran shelf, had a well-developed reefal rim or ramp along its
southwest side (González-Léon et al. 2008).
In Sonora, the rocks of the Bisbee Basin sit unconformably

atop deformed Jurassic arc rocks and isoclinally folded, Oxfor-
dian to Tithonian, marine clastic rocks of the Cucurpe Forma-
tion, which were largely derived from post-160 Ma plutonic rocks
of the bimodal Ko Vaya suite (Mauel et al. 2011; Lawton et al.
2020). We interpret rocks of the Cucurpe Formation to be consan-
guineous with the Tithonian Peñasquitos Formation of the west-
ern Peninsular Ranges near San Diego (Kimbrough et al. 2014),
as both formations have similar basements and contain compara-
ble rocks of the same age. Furthermore, both successions were
deformed between about 145 and 139 Ma and are both uncon-
formably overlain by 130–125 Ma rocks. In the east, the Curcurpe
Formation is overlain by rocks of the Bisbee margin; and to the
west, rocks of the Peñasquitos Formation are overlain by the San-
tiago Peak volcano-sedimentary arc complex. Kimbrough et al.
(2014) noted that another succession, the Mariposa Formation of
the western Sierra Nevada, is also of the same age (Snow and
Ernst 2008), has a similar detrital zircon profile, and was intruded
by 125–120 Ma plutonic rocks of the westernmost Sierran batholith
(Lackey et al. 2012a, 2012b).
Farther south, much of east-central Mexico, such as Oaxaquia,

Central, and Mixteca terranes (Ortega-Gutiérrez et al. 1995;

Centeno-García 2005; Keppie et al. 2012), formed a coherent block
and was covered by a westward-thickening siliciclastic prism
capped by a west-facing Albian carbonate platform (Fig. 2),
known as the Guerrero–Morelos platform in southern Mexico as
well as the Valles – San Luis and El Doctor platform in central
Mexico (Lapierre et al. 1992; Monod et al. 1994; Centeno-García
et al. 2008; Martini et al. 2012). The platformwas built upon about
1000 m of Lower Cretaceous red beds, alluvial sandstone, and
conglomerate with thick evaporite deposits and an older meta-
morphic basement (Fries 1960).
Martini et al. (2014) demonstrated that calcareous and siliciclas-

tic metaturbidites of the eastern Santo Tomás assemblage, depos-
ited on easterly derived submarine fans within the basin, were
exclusively derived from North American sources, such as Oaxa-
quia and the Acatlán and Taray complexes, and were sedimento-
logically disconnected frommafic to intermediate volcanic sources
in the arc to thewest (Fig. 3).
The western margin of the Arperos Basin, now preserved in

eastward-vergent thrust sheets, is represented by the Arcelia
and Arperos assemblages, which comprise Aptian volcaniclastic
metaturbidites derived from the west, and are intercalated with
intraplate and oceanic basalts (Tardy et al. 1994; Martini et al.
2012). Overall, the basin shows a clear provenance asymmetry
with sediments derived from the Guerrero terrane and its cara-
pace of arc rocks to the west and mainland-derived sediments to
the east (Fig. 3), so that the Bisbee–Arperos seaway separated the
Guerrero superterrane and its arc from the Lower Cretaceous pas-
sive margin of North America (Martini et al. 2014; Hildebrand
andWhalen 2014b).

Fig. 3. Block diagram modified from Martini et al. (2014) illustrating the dual nature of sedimentation within the Bisbee–Arperos seaway
of southern Mexico and the 100 Ma collision between the Guerrero superterrane and North America. Where sufficient data exist, these
relations are consistent from southern Mexico to Alaska. [Colour online.]
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Closure of the Bisbee–Arperos seaway and arc-continent collision
Perhaps the best cross section of the orogen in southern and

central Mexico is that of the Sierra Madre del Sur, located south
of the Trans Mexico volcanic belt (Fig. 2). There, beginning in the
late Albian, upward growth of the west-facing carbonate plat-
form stopped, as marked by a disconformity atop massive bio-
clastic carbonate and below a few metres of well-laminated beds
of detrital carbonate, breccias, condensed horizons rich in Albian
faunal debris, and ultimately by hemipelagic shale overlain by
Mexcala flysch (Monod et al. 2000). The disconformity, as well as
the rapid tectonic subsidence and burial of the carbonate plat-
form by hemipelite and orogenic flysch, are easily explained by
transport of the platform over the outer bulge to a trench, where
it was eroded; then, as the platform was pulled into the trench, it
was covered by a thin veneer of hemipelagic mud deposited on
the starved outer-trench slope, only to be overwhelmed by
trench-fill turbidites upon arrival in the trench axis (Fig. 4). East-
erly vergent thrust faults inverted the basin and thrust basinal fa-
cies rocks and basement of the Guerrero superterrane onto the
North American margin, where it originated prior to rifting and
formation of the basin (Fig. 3).
To the west of the carbonate platform, several kilometres of

calc-alkaline and tholeiitic metavolcanic and metasedimentary
rocks of various arc assemblages within the Guerrero superter-
rane (Centeno-García et al. 2008), including, from west to east,
the Zihuatanejo, Arcelia, Taxco – Taxco Viejo, and Teloloapan
assemblages, have U–Pb ages and prominent age peaks ranging
from 141 to 124 Ma (Talavera-Mendoza et al. 2007; Campa-Uranga
et al. 2012), the same age as the passive margin succession on the
eastern side of the Bisbee–Arperos trough. The easternmost units
of the Teloloapan terrane were thrust over the west-facing, domi-
nantly Albian Guerrero–Morelos carbonate platform and its syn-
orogenic cover of Cenomanian Mexcala flysch (Fig. 5) at about 100
Ma. Some researchers (Mendoza and Suastegui 2000; Guerrero-Sua-
segui 2004; Talavera-Mendoza et al. 2007) argued that the eastern-
most Teloloapan metavolcanics, which are penetratively deformed
and recumbently folded, but at relatively low metamorphic grade,

were overlain by a different, but much lesser deformed, carbon-
ate platform just west of the Guerrero–Morelos platform and
place the suture along its eastern boundary. Here we note that
because both carbonate platformal successions formed during
the Albian and are overlain by similar Cenomanian clastic suc-
cessions, we interpret them as formerly continuous units dis-
membered by thrust faults. We locate the suture along the
Teloloapan thrust (Fig. 5), which places the older volcanic succes-
sions eastward over the Albian carbonate platform and its over-
lying orogenic Mexcala flysch as originally envisioned by Campa
and Coney (1983).
In the north, the Sonoran platformwas buried by at least 1500m

of westerly derived Cenomanian and Turonian flysch, termed the
Cintura and Mojado formations, and deposited in a flexural fore-
deep (Mack 1987; González-Léon and Jacques-Ayala 1988). The most
southwestern exposures of Cintura Formation are in excess of
2000 m thick and are overlain gradationally by latest Albian –

early Cenomanian fluvio-deltaic sandstone with sparse pebbles
of quartzite and limestone, and overthrust from the southwest
by plutonic rocks (Jacques-Ayala 1992; T. Lawton, personal com-
munication 2014). Lawton et al. (2020) established the temporal
correlation between the Mojado and Cintura formations by U–Pb
studies of detrital zircons and ash beds, which aid in understand-
ing the nature of the foredeep as far to the east as El Paso, Texas.
The tectonic subsidence was caused by downward flexure of

the lithosphere when the leading edge of the North American
margin was subducted beneath the Guerrero superterrane and
its Lower Cretaceous arc carapace (Pubellier et al. 1995; Martini
et al. 2014). The Cintura Formation is overlain in Sonora by con-
glomerate of the Cocóspera Formation interbedded with ande-
sitic lava dated by 40Ar/39Ar as 93.36 0.7 Ma (González-León et al.
2011). Anderson et al. (2005) also described the thrust belt in some
detail and, based on the age of a pluton that cuts mylonites of the
zone, determined that the deformation was older than 84Ma.
Taken in its entirety, the evidence in western Mexico suggests

that the Alisitos – Santiago Peak arc, and its basement, collided
with a west-facing passive margin at about 100 Ma during the

Fig. 4. Detailed cross section of the uppermost few metres of the west-facing Guerrero–Morelos carbonate platform showing the rapid
transition from carbonate shelf to orogenic deposits near Concordia, Estado de Guerrero. Hoffman (2012) presents an excellent overview
of the process of platform foundering at the beginning of orogenesis. Figure modified from Monod et al. (2000). For location of section,
see Fig. 5. [Colour online.]

coarse, massive
bioclastic limestone

disconformity

well-bedded
calcarenites

coarse limestone
breccia in Mn-rich
calcareous matrix

condensed horizon
of Late Albian 

Ammonites and
rudist fragments

well-bedded
calcarenites

and carbonate
turbidites

manganese
coatings

pelagic
mudstone Mexcala

ysch

west-facing
carbonate

rimmed shelf

emergence & erosion
as platform passed

over outer swell

margin subsiding as it 
was pulled down into trench

trench
sedimentation

W E

older younger

Pagination not final (cite DOI) / Pagination provisoire (citer le DOI)

Hildebrand andWhalen 5

Published by Canadian Science Publishing

C
an

. J
. E

ar
th

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
72

.2
08

.2
09

.1
9 

on
 0

7/
09

/2
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



Peninsular Ranges orogeny. The polarity of subduction was clearly
westward and the western edge of the North American passive
margin was partially subducted beneath the arc. The basin was
apparently a linear trough of unknown width that was open for
at least 30 million years, but it must have been sufficiently wide
to be floored by oceanic crust to drive the 100 Ma collision. If we
assume that half of the 30 million year timespan was spreading,
then at moderate spreading and convergence rates of 5 cm/year
(M€uller et al. 2008), the basin would have been about 750 km
wide: about three-quarters the maximum width of the Sea of
Japan.

Post-collisional plutonism and exhumation of the orogenic
hinterland
Soon after collision and terminal closure of the basin, seem-

ingly within a million years, the collisional hinterland was
intruded by a voluminous suite of post-collisional 99–86 Ma mes-
ozonal to catazonal plutons (Fig. 6). The bodies were intruded
during a period of rapid exhumation when rocks at depths of 15–

23 kmwere brought to the surface in less than 10million years by
detachment faulting and collapse (Krummenacher et al. 1975;
Ortega-Rivera et al. 1997; Ortega-Rivera 2003; Miggins et al. 2014).
Rapid exhumation is also documented by abundant coarse plu-
tonic debris of the Valle Formation, such as boulder beds contain-
ing clasts up to 2.5 m in diameter, as well as abundant 100–90 Ma
detrital zircons deposited during the Cenomanian–Turonian, in
a basin located to the west of the collision zone (Kimbrough et al.
2001). As this basin was located west of the former arc and colli-
sion zone, that is, on the opposite side of the arc from the trench,
it cannot have been a forearc basin. The debris was probably shed
from reverse fault scarps, some with 3–4 kbar of 100–86 Ma exhu-
mation across them, that bounded the hinterland belt to the
west (Schmidt and Paterson 2002; Schmidt et al 2014; see also
Supplementary Fig. S12).
The post-collisional intrusions form a group of gregarious plu-

tons, collectively termed the La Posta suite, after a composition-
ally zoned intrusive complex that spans the international border
(Walawender et al. 1990). The plutons are mesozonal to catazo-
nal, range in age from 99 to 86 Ma (Premo et al. 2014), possibly

Fig. 5. Geological sketch map showing relations near Teloloapan, west-central Mexico, illustrating metavolcanic and metasedimentary
rocks of the Roca Verde, Taxco–Viejo, and Teloloapan arc assemblages thrust over the west-facing Guerrero–Morelos carbonate platform
and its overlying syntectonic cover of Mexcala flysch along the Teloloapan thrust. Modified from Cabral-Cano et al. (2000). Detailed
section at Concordia (Fig. 4) marked by star. See Fig. 2 for location of figure. [Colour online.]
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young eastward (Ortega-Rivera 2003), and are dominated by
large, concentrically zoned complexes comprising biotite–
hornblende-bearing, tonalitic marginal phases grading inward
over several decametres to granodiorite and cored by granite, in
places containing both biotite and muscovite (Hill 1984; Silver
and Chappell 1988; Walawender et al. 1990). A diagnostic charac-
teristic of the bodies in the field is the presence of euhedral titan-
ite (Silver and Chappell 1988).
The plutons were emplaced mostly to the east of the Santiago

Peak – Alisitos arc, although a few intrude the easternmost arc
plutons. Thus, there are two, side-by-side intrusive suites, the arc-
related Escondido / Santa Ana and the post-collisional La Posta.
Plutons of the Escondido / Santa Ana arc suite are mainly epizo-
nal and compositionally more variable, ranging from gabbro
to granite, than the younger, post-collisional La Posta plutons,
which are dominantly granodioritic to tonalitic.
These two different intrusive suites, each with different ages,

depth of emplacement, and composition have been recognized
for some time (Buddington 1927; Larsen 1948; Silver et al. 1979;
Silver and Chappell 1988; Gromet and Silver 1987; Gastil et al.
1975, 1990; Kimbrough et al. 2001; Tulloch and Kimbrough 2003;
Ortega-Rivera 2003). Most researchers agree that the older San-
tiago Peak – Alisitos rocks represents a magmatic arc, but also
infer that the younger La Posta magmatism represented a contin-
uation of arc magmatism, despite development of numerous
models that invoke closure of back-arc basins and collisions just
prior to their emplacement (Silver and Chappell 1988; Gastil et al.
1981; Gromet and Silver 1987; Todd et al. 1988; Walawender et al.
1990; Busby et al. 1998; Johnson et al. 1999; Ortega-Rivera 2003;
Schmidt et al. 2014).
Kimbrough et al. (2001) tied together many critical elements,

including the post-deformational nature of the La Posta suite, the
rapid exhumation, and coeval sedimentation to the west, which
they viewed as the fore-arc region, but they attributed the La
Posta suite to a transient episode of high-flux magmatism.
Tulloch and Kimbrough (2003) expanded on the earlier model by

recognizing that the La Posta suite was a high Na, Sr and low Y
suite and so created a model in which the older, western and low
Sr, Y Santiago Peak – Alisitos arc was underthrust beneath the
mainland arc during slab-flattening, which shut off normal arc
magmatism and generated the burst of La Posta magmatism. In a
more recent contribution, Centeno-García et al. (2011, p. 1793)
noted the strong ties between the history of Baja California and
the Guerrero composite terrane of mainland Mexico and so
speculated that the arc was separated from the continent by a
marginal basin, which closed “when the Early Cretaceous Alisitos
fringing arc underthrust the Mexican continental margin and
the crust was greatly thickened” also without explaining how the
arc ended up on the lower plate and the continental margin on
the upper.
Hildebrand and Whalen (2014b) examined recent inductively

coupled plasma – mass spectrometry geochemical data and, to
resolve the tectonomagmatic difficulties, proposed that the two
plutonic suites were emplaced in two different tectonic regimes
separated by a 100 Ma arc-continent collision. The collision
resulted from the closure of the Bisbee–Arperos seaway, which
had formed along the western North America margin at about
140 Ma (Fig. 4). That the plutons were emplaced during rapid ex-
humation suggested to us that the post-collisional bodies formed
by some mechanism related to slab break-off (Sacks and Secor
1990; Davies and von Blanckenburg 1995). It is the depth of break-
off that largely controls the width of the orogen, for it is the
rebound of the partially subducted continent that will lead to the
region of intense uplift and exhumation (Duretz et al. 2011, 2012;
Duretz and Gerya 2013). Thus, shallow break-off creates narrow
orogens, lower-grade metamorphism, and intense, rapid, and
higher rates of exhumation, whereas deep break-off creates
broad orogens with higher grades of metamorphism and slow,
more subdued rebound (Duretz et al. 2011).
The process of arc-continent collision and slab failure, or

break-off, involves the pulling of the leading edge of the conti-
nent beneath the arc. When the competing buoyancy forces

Fig. 6. U–Pb zircon ages with 2r errors for the Peninsular Ranges batholith plotted versus general longitude. Modified from Premo et al.
(2014) with additional ages from Shaw et al. (2014), Gastil et al. (2014), and Wetmore et al. (2005). The pluton ages prior to 100 Ma are not
aligned by geography, but by age, because most researchers recognized that the western Santa Ana arc suite did not migrate with time
(Silver and Chappell 1988; Shaw et al. 2014). [Colour online.]
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between the oceanic and continental lithosphere are overcome,
the sinking slab tears from the lower continental plate and sinks
into the mantle. Unless the tear is diachronous, the collision
stops at this time, the trench dies, and the continental margin,
now free of its oceanic anchor, rapidly rises thereby generating
extreme exhumation rates in the collision belt. Well-understood
ongoing arc-collision belts, such as Taiwan, provide a timeline
of 4–5 million years for arc-continent collision in the south, slab
break-off, collapse of the mountain belt in the northern part
of the island, and initiation of oppositely directed subduction
beneath the Ryukyu arc (Viallon et al. 1986; Suppe 1987; Lallemand
et al. 2001; Huang et al. 2006; Teng 1996). In the case of the Penin-
sular Ranges orogen, the short time from initial collision of the
arc, which had relatively thin crust, as documented by the pres-
ence of intercalated marine sedimentary rocks in the arc, to
slab break-off — as well as other severe problems discussed by
Hildebrand (2013, p. 82) — preclude crustal thickening by arc
magmas and melting of underthrust cratonic crust, both of
which are integral components to the cyclic arc model of
DeCelles et al. (2009).

The recognition that the two magmatic suites were emplaced
in contrasting tectonic settings led to the construction of a vari-
ety of geochemical discrimination diagrams (Fig. 7) that provide
evidence for the distinction between arc and post-collisional plu-
tons, and are especially useful where the geology is difficult,
obscure, or incomplete. These discrimination diagrams were veri-
fied with Cenozoic arc and post-collisional rocks where the tectonic
setting is independently known (Hildebrand and Whalen 2017; Hil-
debrand et al. 2018). We also devised a protocol for their use
(Whalen and Hildebrand 2019), and then tested their usability with
multiply deformed and metamorphosed volcanic and plutonic
rocks in the Paleozoic Taconic orogen (Hildebrand and Whalen
2020). We discuss our model for the petrogenesis of these rocks fol-
lowing a description of the Sierra Nevada where additional data
from plutons in a similar tectonomagmatic regime helps to unravel
their petrogenesis.
As we describe parts of the orogen farther north, it is impor-

tant to keep in mind that the best exposed cross section of the
orogen is in Mexico and not all of the more northerly cross sec-
tions are as complete, or obvious, as they are complicated by

Fig. 7. Plutonic samples with SiO2 >60% from the Peninsular Ranges batholith plotted on five discrimination diagrams modified from
Hildebrand and Whalen (2014b, 2017) and Whalen and Hildebrand (2019). The Nb vs. Y and Ta vs. Yb discrimination diagrams were
modified from Pearce et al. (1984) by addition of fields for post-collisional and arc plutons based empirically on samples from the
Peninsular Ranges batholith. ORG, within-plate granite. Alisitos volcanic arc data are generally more mafic and are from Morris et al.
(2019). [Colour online.]
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younger orogenic events, intrusions, or cover. Nevertheless, we
find that along strike, sufficient components of the orogen exist
to ascertain that it is continuous and coeval from Mexico to
Alaska (Fig. 8). In most locations, several of the following features
exist and collectively constitute a rationale for correlation and
continuity along strike.

1. The occurrence of an Early Cretaceous trough, 140–100 Ma,
comprising volcano-sedimentary arc successions formed on a
substrate of Jurassic orogenic rocks, commonly atop Paleozoic
cover.

2. A >100 Ma arc with magmatism that overlaps temporally
with sedimentation in the trough and is located along the
western margin of it.

3. Sedimentation within the trough that deposited different age
debris adjacent to opposite sides of the basin.

4. The consilience of deformation of the volcano-sedimentary
arc successions, shutdown of arc magmatism, eastward-verging
thrusting, and formation of an orogenic foredeep— all at about
100 Ma.

5. Post-deformational plutons, with compositions distinct from arc
plutons, and ranging in age from 99 to 84 Ma, were emplaced
into an orogenic hinterland during rapid exhumation.

6. Reverse faults, typically with 6–10 km of east side up separation,
formed along the westernmargin of the orogenic hinterland.

7. Sedimentary rocks, most commonly Cenomanian to Santonian,
containing abundant post-collisional plutonic debris were shed
westward into the back-arc region during exhumation of the
hinterland to the east.

Whereas the trough opened along a largely Jurassic accretion-
ary margin, it contained a wide variety of rocks ranging in age
from Precambrian to Cretaceous and grouped inmany ways from

area to area. In some places, such as Mexico, the Guerrero terrane
refers to the westernmost outboard terrane, but in other places
along strike, rocks had not been grouped into older terranes and
groups, or were previously part of named terranes, but were dis-
membered and now occur on both sides of the trough. For exam-
ple, in the Canadian Cordillera, the more easterly Intermontane
and westerly Insular superterranes collided during the Jurassic,
but rifting during opening of the seaway at 140–135 Ma, did not
occur at precisely the same location(s) as the previous suture, so
although the western block was dominated by rocks of the Insu-
lar terrane, it could contain fragments of Intermontane terrane
and form a new western composite terrane. The lack of recogni-
tion of this 100 Ma suture zone led to some implausible models
involving reversed basins and large-magnitude strike-slip faults
(Monger et al. 1994; Gehrels et al. 2009). By recognizing the exis-
tence of the Early Cretaceous seaway, we resolve these types of
problems to some degree, but the problem of previously defined
terranes occurring on opposite sides of the basin is an artifact of
problems inherent in the existing nomenclature. To resolve these
issues, we refer to all of the rocks on the outboard arc-bearing
block, which appear to have formed a continuous ribbon conti-
nent, as the Peninsular Ranges composite terrane, althoughwe still
utilize the original names wherever reasonable to do so, such as
with local basement-cover relations.

Mojave Desert sector
The thrust belt in Sonora can be traced northward to about

the United States border where it is transected by a segment of
the younger, and somewhat sinuous, Laramide orogen, which
trends nearly east–west across southern Arizona and California
(Hildebrand 2015). To the north, the 80–70Ma post-deformational
intrusions of the Laramide are progressively less common (Fig. 9)
and the 100–85 Ma post-deformational plutons reappear to the

Fig. 8. Similarities along strike within the Peninsular Ranges orogen, from Mexico to Alaska, of major sedimentological,
magmatotectonic, and tectonic packages arranged from west to east, along with their age constraints, where known. Note the coeval
nature of most units along strike. The absence of a foreland basin north of the Lewis and Clark line in Idaho/Montana is attributed to
uplift and erosion during the younger Laramide orogeny.
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north of the Laramide McCoy Mountains Formation, and to the
west within California in the Big Maria Mountains, where a 86 Ma
granodiorite was folded during the Laramide orogeny (Hamilton
1964; Stone 2006). Just to the north in the Turtle and Riverside
mountains, several intrusions are in the 100–85 Ma range (Allen
et al. 1995). One granodioritic pluton, in the Granite Mountains,
just north of Palen Pass, is undated, but cuts Jurassic rocks and gen-
erally contains amylonitic foliationwith amineral lineation (Stone
and Kelly 1989) so is likely another member of the 100–84 Ma suite.
Near the northern end of the Piute Range, the 856 7 Ma East Piute
body is weakly to strongly peraluminous, undeformed tomylonitic,
and predates the Laramide deformation (Fletcher and Karlstrom
1990; Miller et al. 1990).

Some researchers recognized the lithological similarities of
the 100–84 Ma Mojave plutons (for example, Allen et al. 1995)
with those of the Sierra Nevada and Peninsular Ranges batholiths
and wondered why they were so far out of line with those belts.
Faults or tears in the subducting plate might be responsible for
apparent jumps across strike.
Themid-Cretaceous thrust belt of the US Cordillera, commonly

referred to as the Sevier fold-thrust belt (Armstrong 1968), reap-
pears in the New York Mountains of California (Burchfiel and
Davis 1977), where highly strained metavolcanic rocks range in
age from 98.4 to 97.6 Ma, whereas associated metasedimentary
rocks of Sagamore Canyon (Fig. 9) have MDAs of 98 Ma (Wells
2016). Thrust faults cut the volcanic rocks and are cut by 90.46

Fig. 9. Map modified from Wells (2016) and Hildebrand and Whalen (2017) on a geological base provided by Sue Beard (US Geological
Survey) showing the location of sites near Las Vegas, Nevada, with evidence for 100 Ma thrusting as red stars, and location of 100–85 Ma
plutons described in text as blue stars. WCT, Wilson Cliffs thrust; RST, Red Springs thrust; WPT, Wheeler Pass thrust. [Colour online.]
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0.8 Ma Mid Hills monzogranite, which is one of several plutons of
the 98–90 Ma Teutonia batholith (Beckerman et al., 1982; Miller
et al. 2007; Haxel andMiller 2007;Wells 2016).
In the Mezcal Range to the northwest, a sequence of 100.56

2 Ma basaltic lavas and epiclastic rocks overlain by plagioclase
porphyritic ignimbrites and lavas known as the Delfonte vol-
canics (Fig. 9), was detached, folded, and transported eastward on
thrust faults (Fleck et al. 1994; Walker et al. 1995) prior to the
emplacement of the Teutonia batholith. Other allochthons in the
area carry deformed plutons dated between 150 and 140 Ma
(Walker et al. 1995).
In the southern Spring Mountains just southwest of Las Vegas

(Page et al. 2005), nonmarine sedimentary and volcaniclastic
rocks of the Lavinia Wash sequence (Fig. 9), interpreted as syn-
orogenic deposits by Carr (1980), lie structurally below the con-
tact thrust plate. A rhyolitic boulder in conglomerate of the
Lavinia Wash sequence was dated at 98.0 Ma, and plagioclase
within an ignimbrite in the sequence yielded a 40Ar/39Ar age of
99.06 0.4 Ma (Fleck and Carr 1990). Two different ages of thrusts
are well mapped and described in the area of the Spring Moun-
tains, Nevada (Burchfiel et al. 1974, 1998; Axen 1987; Walker et al.
1995; Page et al. 2005), where the spectacularly exposed Keystone
thrust is a classic example of a younger and “out-of-sequence”
thrust (Longwell 1926; Davis 1973; Burchfiel et al. 1998).
A conglomerate unit within Brownstone Basin (Fig. 9), sits

structurally beneath the Red Spring thrust and contains cobbles
and pebbles apparently derived from the Wheeler Pass thrust
plate to the west (Axen 1987), as well as detrital zircons as young
as 103–102 Ma (Wells 2016). The Wheeler Pass thrust sheet itself
(Fig. 9), where exposed in the Spring Mountains, contains evi-
dence for exhumation during the Late Jurassic (Giallorenzo
2013), which perhaps reflects the Nevadan event; however, zircon
(U–Th)/He thermochronology from the thrust sheet, where exposed
in the Nopah Range to the southwest (Fig. 9), shows that exhuma-
tion started there at�100Ma (Giallorenzo 2013).
In both the Caborca region of Sonora and the SpringMountains –

Death Valley area west of Las Vegas, distinctive Neoproterozoic
and Cambrian sedimentary rocks, such as the Noonday Dolomite,
Johnnie Formation, and Stirling Quartzite, unknown from autoch-
thonous North America, were transported eastward in allochthons,
although theywere originally hypothesized to be offset by the enig-
matic Mojave–Sonora megashear (Stewart 2005). The Neoprotero-
zoic successions, as well as 150–140 Ma plutons, and the 100.5 Ma
Delfonte volcanics, were likely situated at or near the leading edge
of the arc terrane during basin closure. However, without Lower
Cretaceous cover on the eastern North American block, precisely
which thrust faultmarks the suture is not obvious.
Northeast of Las Vegas (Fig. 9), the upper Albian to Cenomanian

Willow Tank Formation and Baseline Conglomerate, interpreted
as synorogenic foreland deposits, rest unconformably on Middle
Jurassic Aztec sandstone in the Valley of Fire region, and were
dated as 98–96 Ma (Fleck 1970; Bohannon 1983; Bonde 2008; Pape
et al. 2011). More recent studies of detrital zircons from these and
other local formations— as well as zircons from plutons and vol-
canic rocks — bracket deformation from 102 to 96 Ma (Troyer
et al. 2006; Bonde et al. 2012; Wells 2016).
Farther north in east-central Nevada, eastward-vergent thrust

faults within the Garden Valley thrust system (Bartley and Gleason
1990), part of the Central Nevada fold and thrust system (Speed
et al. 1988; Long 2015), are cut by the �98 Ma Lincoln stock and the
�86 Ma Troy granite (Taylor et al. 2000). Basinal sedimentary rocks
of the westerly derived Newark Canyon Formation are exposed
within the Central Nevada fold and thrust belt in east-central Ne-
vada and were deposited from about 106 Ma until just after 99 Ma
(Di Fiori et al. 2020). The rocks could be a remnant of the through-
going pre-collisional seaway as they appear to be too old to be part
of the foredeep succession. The Nevada data are consistent with
folds and thrusts active at about 100 Ma in eastern Nevada, but the

northward continuation of the Sevier fold-thrust belt from the Las
Vegas area lies farther east in Utah and will be examined after
descriptions and discussion of the Sierra Nevada arc.

The Sierra Nevada
The geology of the Sierra Nevada is similar to the Peninsular

Ranges in that it has a 130–100 Ma volcano-plutonic arc complex,
built largely on Jurassic to Paleozoic basement, and situated
west of a 100–82 Ma suite of dominantly granodioritic–tonalitic
intrusions. One fundamental difference is located in the western
Sierran foothills where at least three different arc terranes (Sup-
plementary Fig. S22), younging westward and each accreted dur-
ing the Jurassic, serve to document westerly subduction, because
arcs are the upper plate in collisions (Brown et al. 2011; Hildebrand
2013). Each accretionary event was followed by an interval of post-
collisional plutonism that spanned several adjacent terranes (Sup-
plementary Fig. S22), which is typical for slab failure magmatism
(Hildebrand andWhalen 2017).
Early Cretaceous arc rocks are less abundant in the Sierra Ne-

vada than in the Peninsular Ranges batholith, butmany intrusive
rocks of that age exist and are widely distributed (Bateman 1992).
Perhaps the best-studied example of Early Cretaceous plutonic
rocks was by Clemons-Knott, who mapped a group of �120 Ma
ring complexes, known as the Stokes Mountain complex, and
produced geochemical analyses and isotopic data (Clemens-Knott
1992; Clemens-Knott and Saleeby 1999). Other examples of 130–
100 Ma rocks occur as roof pendants within the batholith.
Saleeby et al. (1990) described the geology of the Boyden Cave

and Oak Creek pendants (Fig. 10; Supplementary Fig. S32), both
located in Sequoia – Kings Canyon National Park. In the Boydon
Cave pendant, a variety of <110 Ma metavolcanic and metasedi-
mentary rocks — as well as Paleozoic and Jurassic metasedimen-
tary rocks — are intruded by a number of highly strained 103 Ma
hypabyssal intrusions and by post-deformational plutons at
about 100 Ma. The Oak Creek pendant, located to the west on the
Sierran Crest, comprises Jurassic metavolcanic rocks overlain
with angular unconformity by deformed and metamorphosed
<110 Ma basaltic to rhyolitic tuff, breccia, and lava, cut by hyp-
abyssal sills, and intruded by plutons dated at 106–105 Ma. Chen
and Moore (1982) obtained a slightly discordant U–Pb age on zircon
of 103–100Ma from an leucogranite body that cuts the sequence.
Memeti et al. (2010), in trying to define the location of the cryp-

tic Snow Lake shear zone of Lahren and Schweickert (1989), col-
lected and analyzed detrital zircons from several pendants, two
of which are applicable to our study. The first is at Cinko Lake,
located to the northeast of the Snow Lake pendant, where a
sequence of metavolcanic and metasedimentary rocks, folded
about northwest axes, have MDAs of 103 Ma; were intruded by a
101.86 0.2 Ma pluton, also metamorphosed and deformed; and
cut by the voluminous post-deformational 94–84 Ma Tuolumne
intrusive complex and the 96 Ma Kinney Lakes granodiorite of
the Sonoran Pass intrusive complex (Fig. 11). Just a few kilometres
to the southeast and along the eastern contact of the Tuolumne
complex, Cao et al. (2015) obtained an MDA of 117.4 6 2 Ma from
volcanogenic sandstones cut by a 97.46 0.4 Ma pluton. Deformed
metasedimentary rocks in both the Strawberry Mine and Cinko
Lakes pendants produced U–Pb zircon age peaks of 117, 116, 112,
108, 103, 99, and 96 Ma, consistent with local Aptian–Albion arc
sources (Memeti et al. 2010). We call the magmatic and related
sedimentary rocks the Cinko Lake arc trough after dated expo-
sures at Cinko Lake.
Farther south in the Mineral King pendant (Supplementary

Fig. S32), Sisson and Moore (2013) report U–Pb zircon ages for
metarhyolitic tuffs and andesitic lavas of 111–102 Ma, with older
metarhyolites and siliceous sills ranging back to 140 Ma. They
also reported that a 98 Ma granodiorite cuts vertical metasedi-
mentary rocks, which are also cut by isoclinally folded aplites,
one of which produced a U–Pb zircon age of about 98Ma.
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Near the southern end of the batholith, where it outcrops
along the Kern Canyon fault (Supplementary Fig. S32), the
Erskine Canyon sequence comprises 105–102 Ma siliceous ignim-
brites and subordinate intermediate lava flows, along with asso-
ciated hypabyssal rocks (Saleeby et al. 2008). These authors also
document several plutons with ages ranging from 105 to 103 Ma
cropping out to the west and a 98 Ma granodiorite to the east.
Even farther south, in the Tehachepi Mountains, Wood (1997)
mapped and dated by U–Pb zircon methods, several isoclinally
and recumbently folded gabbroic, dioritic, and tonalitic plutons
of the Tehachapi intrusive complex, which yielded ages of about
100 Ma, and sit close to the Oaks metavolcanics (Supplementary
Fig. S32) dated at 103 Ma (Chapman 2012). Thus, widespread pend-
ants within the main Sierran block consistently contain evidence
for the existence of Early Cretaceous volcanic and epiclastic rocks
that were deformed at about 100 Ma prior to emplacement of post-
deformational plutons as old as 98–96Ma.
In the northern Sierra (Supplementary Fig. S32), northwest of

Lake Tahoe, Lower to Upper Jurassic metavolcanic and metasedi-
mentary rocks of the Eastern Mesozoic belt (Christe and Hannah
1990) are unconformably overlain by a sequence of Barremenian
prehnite–pumpellyite grade metasedimentary and metavolcanic
rocks collectively known as the Evans Peak sequence (Christe
2011). Lower units in the sequence comprise chert-pebble con-
glomerate and quartzose sandstones, which are overlain by

coarse-grained plagioclase-rich sandstone, tuffaceous shales,
green siliceous tuff, volcanic cobbly conglomerate and �128 Ma
ignimbrites, overturned beneath the west-dipping Taylorsville
fault, which places Paleozoic rocks of the northern Sierra ter-
rane atop the early Cretaceous sequence (Moores and Day 1984;
Christe 2010, 2011). Although we only have a maximum age, it is
possible that the Taylorsville thrust is a 100 Ma structure and the
rocks of the Evans Peak sequencemight be the oldest known supra-
crustal rocks of the Early Cretaceous Cinco arc and trough in the
Sierra Nevada. Additional studies in the area arewarranted.
At the northernmost end of the White Mountains, west of

White Mountain peak, (Supplementary Fig. S32) is an overturned
section of metasedimentary and volcaniclastic rocks, containing
detrital zircons derived mostly from local 120–115 Ma volcanic
sources, that sit beneath a low angle fault carrying the Jurassic
Barcroft pluton (Scherer et al. 2008). If the entire section, includ-
ing the Jurassic rocks in the upper plate is overturned, then the
fault is likely to be a normal fault; otherwise, it is, as queried by
Scherer et al. (2008), a west-vergent thrust. Whatever its kinemat-
ics, this low-angle fault is transected by a body dated by U–Pb to
be 1006 1 Ma (Hanson et al. 1987).
Although the age of deformation is tightly constrained by

metasedimentary, metavolcanic, and plutonic rocks to be about
100 Ma, another line of evidence supports both age and subduction
polarity in the Sierran sector of the Peninsular Ranges orogen.
Chin et al. (2013) document granulite quartzite xenoliths (T =

700–800 °C and P = 7–10 kbar), brought to the surface in a Mio-
cene diatreme of the central Sierra Nevada, that contain zircons
with Proterozoic and Archean cores, but with rims that yield a
mean metamorphic age of 103 Ma. They interpreted the Protero-
zoic and Archean U–Pb crystallization ages found in the cores of
detrital zircon grains, and Hf isotopic ratios like those from Pro-
terozoic basement east of the Sierra Nevada, as the vestiges of
rocks deposited along the North American passive margin that
were transported deep beneath the arc where they were meta-
morphosed at about 100 Ma. As the North American platform is
unknown west of the Sierra Nevada, we infer that the rocks were
underthrust beneath the Cinko Lake arc from the east.
From the above, it appears that the age of deformation in rocks

of the Sierran batholith is coeval with rocks of the Peninsular
Ranges batholith (Memeti et al. 2010; Chin et al. 2013), as well as
easterly vergent thrust faults located in eastern California and in
the Spring Mountains of Nevada discussed earlier. By analogy, we
suggest that within the Sierra Nevada, subduction of the leading
edge of North America beneath the Cinco Lake arc during closure
of the basin led to break-off of the North American oceanic litho-
sphere, and its descent, along with perhaps part of the rift com-
plex, into the mantle. Thus, even though the Cretaceous passive
margin succession on the eastern side of the basin is not exposed,
the overwhelming geological and temporal similarities lead us to
conclude that the Cretaceous Sierra Nevada and broader Great
Basin are part of the Peninsular Ranges orogen. We now briefly
describe and examine the post-deformational magmatic suite
within the Sierra Nevada to demonstrate that rocks of the suite
are compositionally and temporally similar to the post-collisional
La Posta plutonic suite, located farther south. We then utilize the
geochemical and isotopic variations, as well as the timing from
both suites, to constrain the origin of post-collisional magmatism
by slab break-off.

The post-collisional Sierran Crest magmatic suite
Largely outcropping east of the 130–100MaCinco arc assemblage,

dozens of post-deformational 99–84 Ma tonalitic–granodioritic plu-
tons (Supplementary Fig. S32) are known collectively as the Sierran
Crest magmatic suite (Coleman and Glazner 1998). Just as early
researchers recognized that there were two intrusive suites in the
Peninsular Ranges batholith, researchers in the Sierra Nevada

Fig. 10. Sketch map showing four post-collisional centered complexes
of the Sierra Nevada. These are only a few of the post-collisional
plutons. See Supplementary Fig. S32 for a more detailed view of the
southern sector of the batholith. Location of Fig. 11, Cinco Lake
pendant, as well as location of Boyden Cave and Oak Creek pendants,
are starred. Modified from Davis et al. (2012). [Colour online.]
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understood that the more mafic plutons within the Sierra Nevada
batholith occur west of more intermediate-composition bodies
(Lindgren 1915; Buddington 1927; Moore 1959; Moore et al. 1961).
Many researchers have since confirmed that the intrusions of the
Sierra Nevada are readily divisible into older western and younger
eastern sectors (Fig. 12) on the basis of geochemistry, magnetic sus-
ceptibility, age, and both radiometric and stable isotope ratios
(Chen and Tilton 1991; Bateman et al. 1991; Kistler 1990, 1993;
Saleeby et al. 2008; Lackey et al. 2008, 2012a, 2012b; Chapman
et al. 2012). But, like rocks of the Peninsular Ranges, the defor-
mation that occurred between the two magmatic suites went
largely unrecognized, or was considered to be related to the
emplacement of the plutons (Bateman 1992).
The post-collisional plutonic rocks within the Sierran Batholith

range in composition from gabbro to leucogranite, but the most
common rocks are tonalite, granodiorite, and granite (Bateman
and Wahrhaftig 1966; Bateman et al. 1963; Bateman 1992; Ross
1989). In general, the hundreds of mesozonal intrusions within the
post-100 Ma composite batholith have sharp contacts with one
other, or are separated by minor screens of older metamorphic
rock (Bateman 1992; Bartley et al. 2012).
Bateman (1992) distinguished several intrusive suites of coge-

netic, but not necessarily comagmatic, plutons that have distinc-
tive petrographic, compositional, and textural characteristics, as
well as spatial proximity. The best known are the <100 Ma com-
positionally zoned complexes of the Sierran Crest magmatic
suite (Coleman and Glazner 1998), such as the Tuolumne intru-
sive suite, the Mount Whitney Suite, the John Muir suite, and the
Sonora Pass intrusive suite (Fig. 10), all of which consist of seem-
ingly nested units that are progressively younger andmore leuco-
cratic inward (Calkins 1930; Leopold 2016; Bateman and Chappell
1979; Huber et al. 1989; Hirt 2007). Plutons of the Sierran Crest
magmatic suite, were emplaced along the eastern Sierran crest
between 98 and 84 Ma, and many are characterized by an outer,
older tonalite and granodiorite in sharp contact with an inner
younger hornblende porphyritic granodiorite, and cored by even
younger K-feldspar megacrystic granite and granodiorite (Bateman
1992; Coleman andGlazner 1998; Hirt 2007).
Besides a spatial centering, it is unclear whether or not individ-

ual plutons within any of the so-called “nested” complexes are
related, other than by source. Originally, Bateman and Chappell

(1979) argued that the compositional zoning within the Tuo-
lumne intrusive complex resulted from crystal fractionation of a
single voluminous influx of magma. However, subsequent iso-
topic work (Kistler et al. 1986) ruled out this possibility, and U–Pb
zircon age determinations demonstrated that the complex was
emplaced over 10 million years from 95 to 85 Ma (Coleman et al.
2004) thereby negating the two-component mixing scheme fav-
oured by Kistler et al. (1986). Instead, Coleman et al. (2004) argued
for incremental emplacement of stacked intrusive sheets.

Geochemistry and origin of the post-collisional plutons
Since the early days of plate tectonics, most researchers have

developed models for the North American Cordillera where the
older arc-related magmatism developed above an eastwardly dip-
ping subduction zone and that shallowing subduction forced arc
magmatism to prograde eastwardly into the western margin of
North America, where it interacted with, and assimilated, older

Fig. 11. Geological sketch map of the Snow Lake and western Cinco Lake pendant (Lahren et al. 1990; Wahrhaftig 2000; Memeti et al.
2010; Leopold 2016), showing ages of folded metavolcanic, metaplutonic, and metasedimentary rocks and their truncation by younger
post-collisional plutonic complexes, which constrain the age of deformation to be between 102 and 96 Ma. DV, Death Valley. [Colour online.]
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cratonic crust (Bateman and Clark 1974; Kistler and Peterman 1978;
Kistler 1990; Gastil et al. 1981; Saleeby et al. 1990; Walawender et al.
1990; Chen and Tilton 1991; Johnson et al. 1999; Todd et al. 2003;
Grove et al. 2003;Ortega-Rivera 2003;Ducea andBarton 2007; Paterson
et al. 2014; Schmidt et al. 2014; Cao et al. 2015; Ducea et al. 2015).
Our analysis challenges this paradigm and proposes that the

arc and post-collisional suites were derived from the mantle
directly, without extensive crustal interaction (Hildebrand and
Whalen 2017; Hildebrand et al. 2018). Furthermore, these data
unexpectedly suggested to us that post-collisional magmatism
was likely responsible for producing at least half of all continen-
tal crust and by doing so resolves the long-standing crustal com-
position paradox (Rudnick 1995).
On our discrimination diagrams, the Sierra plutons plot in the

same fields as those of the rocks from the Peninsular Ranges (Fig. 13,
Supplementary Fig. S42). Although arc and post-collisional bodies
are superficially similar in field characteristics, there are consistent
major andminor geochemical differences between the>100Ma arc
and<100Ma post-collisional suites (Hildebrand andWhalen 2014b).
For example, most rocks of the La Posta and Sierran Crest mag-
matic suites contain 60%–70% SiO2 whereas the arc suite displayed
a continuous range from basalt to rhyolite (Fig. 14). Relative to the
arc rocks, members of the La Posta – Sierran Crest suites were gen-
erally more enriched in incompatible elements, as well as Sr, Na,
and Nb, haveminor to negligible Eu anomalies, and are depleted in
Y and heavy rare earth elements as recognized over 30 years ago by
Gromet and Silver (1987). They proposed that, although thewestern
pre-100 Ma rocks are typical arc rocks, the eastern, post-100 Ma plu-
tons were derived from a plagioclase-free, garnet-bearing source—
most likely eclogite or metabasalt. They suggested that altered
basaltic magma ponded at the base of the crust and thickened
it, only to be remelted later to create the post-100 Ma suite;
although the process by which basalts might have been emplaced
at the base of the arc crust prior to arc magmatism in the east
remained unanswered. While certainly attractive, models that
involve melting of basalt accumulated at the base of the arc are
unsatisfactory because the post-100 Ma rocks are post-tectonic,
and at the time of that magmatism, the leading edge of the conti-
nental margin had already been subducted beneath the arc, effec-
tively isolating the arc from the mantle. And the switchover to
post-collisional magmatism happened far too rapidly for accu-
mulations of basalt to build up, as even the youngest arc rocks
are intercalated with marine sedimentary rocks in both the Pe-
ninsular Ranges (Allison 1974; Phillips 1993; Busby et al. 2006)
and Sierra Nevada (Nokleberg 1981; Saleeby et al. 2008; Memeti
et al. 2010).
Putirka (1999) modeled aggregate melts using polybaric partial

melting of mantle rocks transported from their source to the
base of the lithosphere and found that Sm/Yb ratios increases
with depth of melting in peridotite, eclogite, and garnet pyroxen-
ite, as well as with greater lithospheric thickness. On a La/Sm vs.
Sm/Yb diagram (Fig. 15), slab failure suites consistently have
higher Sm/Yb than arc suites, indicative of initial melting at
greater depths, which led us to test and utilize this diagram as
another discriminator between the two suites, with a Sm/Yb
boundary of 2.5.

Isotopic constraints
Lackey et al. (2008) showed that intrusions of the post-100 Ma

Sierran Crest magmatic suite had d18Ozircon within, and close to,
the range of mantle d18Ozircon values. For example, Tuolumne
plutons have d18Ozircon ratios of 6.0%–6.6%, Mount Whitney zir-
cons are 5.67%–5.90%, and other intrusive bodies emplaced at
96 Ma range as low as 4.21%. The sub-mantle values probably
represent melting of hydrothermally altered rocks that had pre-
viously interacted with low d18O meteoric water at high tempera-
ture (see Bindeman 2008). Overall, these data suggest that the

Fig. 13. Nb vs. Y discrimination diagram from Hildebrand and
Whalen (2017) for various Sierra Nevada and northwestern Nevada
plutonic suites: pre-collisional 120 Ma Sierran Stokes Mountain
complex arc rocks (Clemens-Knott 1992), 94–84 Ma postcollisional
Tuolumne intrusive suite (Memeti 2009), Sahwave intrusive suite
of northwestern Nevada (Van Buer and Miller 2010), and Onion
Valley hornblende gabbro (Sisson et al. 1996) plus northern
Nevada plutonic rocks (du Bray 2007). WPG, within-plate granite;
ORG, ocean-ridge granite. [Colour online.]
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magmas were dominantlymantle derived but with some contam-
ination by source rocks that had previously interacted with hot
meteoric water.
Plutonic rocks of the post-100 Ma La Posta suite in the Peninsu-

lar Ranges batholith have heavier whole rock d18O with values
between 8% and 11% (Taylor and Silver 1978). These values led
Lackey et al. (2008) to argue that relatively young, hydrother-
mally altered oceanic crust was the most plausible source of the
magmatism as hydrothermally altered, oceanic basalt has whole
rock d18O�10% (Eiler 2001; Bindeman et al. 2005).
Some of the most obvious differences between the arc and post-

collisional magmas are their different initial Nd and Sr isotopic
ratios in that the post-collisional rocks typically have negative eNdT
and 87Sr/86Sri> 0.706, whereas the arc rocks have positive eNdT and
less evolved 87Sr/86Sri (Fig. 16). As mentioned earlier, the more
evolved ratios are classically interpreted to represent assimilation
of continental crust as the subducted slab shallowed (Kistler and
Peterman 1978; DePaolo 1980, 1981; Bateman 1992; Ducea andBarton
2007; DeCelles et al. 2009), but additional data suggest another
plausible source.
Mid-Cretaceous mantle-derived �100 Ma pyroxenite xenoliths

carried to the surface by Cenozoic basaltic magmas in the Sierra
Nevada have dominantly mantle d18O values (Lackey et al. 2008;
Ducea and Saleeby 1998), but many also have negative eNd(0) and
87Sr/86Sri > 0.706 (Fig. 16). Both the plutons and the pyroxenite

xenoliths also have Nd and Sr isotopic values similar to much
younger basalts widely erupted in western North America (Fig. 16),
including those of the<17 Ma Snake River Plain (Hanan et al. 2008)
and the 44–7 ka Big Pine volcanic field, erupted along the eastern
Sierran fault scarps (Blondes et al. 2008; Ormerod et al. 1991). Three-
component isotopic mixing models, utilizing (1) the oceanic island
basalt–like Steens–Imnaha lava, erupted west of the inferred conti-
nental edge, to represent the asthenospheric (Yellowstone plume)
component, (2) old lithosphere like that of the Wyoming craton,
and (3) younger Paleoproterozoic-like lithosphere, show that >97%
of the variability can be accounted for by progressive incorporation
of older subcontinental mantle lithosphere (SCLM) eastward along
the Yellowstone hot spot track (Jean et al. 2014). Thus, we infer
that the Sr and Nd isotopic ratios of the post-100 Ma plutonic rocks
of the SierraNevada andPeninsular Ranges batholithswere derived
from fractionalmelting of old, enriched SCLM.
Other post-collisional suites, such as the 100–85 Ma plutons

within the Coast Range batholith of British Columbia have posi-
tive eNdT and Sri < 0.704 (Girardi et al. 2012; Wetmore and Ducea
2011) similar to Steens basalt (Camp andHanan 2008), but contain
typical slab failure trace element signatures (Hildebrand and
Whalen 2017), so apparently do not have old, enriched SCLM
beneath them.
The contrasting isotopic signatures of arc and post-collisional

magmatism can be explained by a scenario in which the arc mag-
mas rose through juvenile arc lithosphere, and so exhibit non-
radiogenic values. However, after collision subcontinental mantle

Fig. 15. Rocks from both pre- and post-100 Ma suites from the
Peninsular Ranges batholith plotted in La/Sm vs. Sm/Yb space. Sm/
Yb ratios are one measure of partial melting depth in the mantle
(Putirka 1999). Rocks older than 100 Ma have Sm/Yb values <2.5,
whereas younger rocks have Sm/Yb >2.5. The differences
presumably reflect depth of melting of the original source
magmas and thus whether garnet was stable in the source.
According to Putirka (personal communication, 2016), partial
melts of spinel peridotite should produce more melt due to larger
degrees of partial melting than the deeper garnet peridotites,
most partial melts of spinel peridotite will have Sm/Yb less than
�2.5. Based on values from hundreds of younger arc rocks from
the GEOROC database, Hildebrand and Whalen (2017) found
Sm/Yb = 2.5 to be an effective dividing line between arc and
post-collisional rocks. [Colour online.]
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Fig. 16. eNdT vs. 87/86Sri plot of various arc and slab failure
plutonic and volcanic suites of the Peninsular Ranges and Sierra
Nevada compared with some Cenozoic basalts of western North
America (modified from Hildebrand and Whalen 2017), illustrating
the isotopic differences between arc suites and slab failure suites
and the isotopic similarities of the Peninsular Ranges and Sierran
post-collisional slab failure suites with basalts from the Snake
River Plain (Jean et al. 2014; Hanan et al. 2008) and Big Pine
volcanic field (Blondes et al. 2008). Fields for two Cascade arc
volcanoes (CL, Crater Lake and Lassen) from Bacon et al. (1994),
Sierran mantle xenoliths from Ducea and Saleeby (1998). CHUR,
chondritic uniform reservoir. [Colour online.]
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typically belongs to the lower plate, which, if cratonic, isolates the
arc from its formerly subjacentmantle. Thus, magmas triggered by
slab failure may have very different (more radiogenic) isotopic
ratios because enrichedmantle lithosphere was pulled beneath the
arc just prior to slab failure. Likewise, where both upper and lower
plates are young, they both should exhibit non-radiogenic isotope
ratios (Hildebrand et al. 2018).
Geochemistry and isotopic analyses suggest that pre- and post-

collisional magmas were derived from two different sources at dif-
ferent depths as previously envisioned for the Peninsular Ranges
by Gromet and Silver (1987). They also noted, as have Girardi et al.
(2012) in the Coastal batholith of British Columbia, that the post-
collisional rocks have minor to negligible Eu anomalies, which is
the general case for post-collisional slab-failure-derived magmas
(Hildebrand andWhalen 2014b, 2017). The lack of a Eu anomaly sug-
gests the absence of residual plagioclase in the source.
Hildebrand and Whalen (2017) showed that most slab window

adakitic rocks have trace element concentrations and ratios simi-
lar to slab failure rocks with mantle-like Sr and Nd isotopic con-
centrations, except for those of western North America, which
have isotopic compositions typical of the Snake River Plain, Sier-
ran Crest magmatic suite, and the Big Pine volcanic field. These
results support a slab failure model that involves melting of the
oceanic slab at depths sufficient for partial melting of garnetifer-
ous, plagioclase-free rocks to produce the observed trace element
profiles in both adakites and slab failure rocks, as well as the
unradiogenic Sr and radiogenic Nd ratios in regions without old,
enriched SCLM.
In regions where there was enriched SCLM, we found that Nd

and Sr isotopes were more evolved so we suggested that the ris-
ing magmas fractionally melted the SCLM to produce the more
evolved isotopic signatures, as well as the general lack of correla-
tion between silica and incompatible elements (see Supplemen-
tary Fig. S52; Hildebrand and Whalen 2017; Hildebrand et al.
2018).

Great Valley Group
Although the Sierra Nevada is characterized by voluminous 130–

100 Ma arcmagmatism, no temporally equivalent arc debris occurs
in the adjacent Great Valley Group located on the western side of
the arc terrane, and in fact, there are no Early Cretaceous sedimen-
tary rocks known even in drill core from the eastern Central Valley
of California (Ojakangas 1968; Reid 1988; DeGraaff-Surpless et al.
2002; Orme and Graham 2018). Additionally, rocks of the Great
Valley Group and their basement along the western margin of
the Central Valley (Constenius et al. 2000) show no evidence of
deformation related to the Nevadan orogeny (Wright and Wyld
2007), or the 100 Ma deformational event of the Sierra Nevada
(Hildebrand 2013). These observations are consistent with the
model of Wright and Wyld (2007) in which the western Great
Valle Group, Coast Ranges ophiolite, and the Early Cretaceous
part of the Franciscan complex migrated into the area at about
100Ma.
Exhumation of the hinterland in the Sierra Nevada region and

emplacement of plutons of the Sierran Crest magmatic suite
appear to have been contemporaneous with deposition of thick
Cenomanian–Turonian clastic successions to the west (Mansfield
1979; Surpless et al. 2006) just as in the Peninsular Ranges. This
same contrasting feature occurs at a few localities to the north,
such as the Coast Ranges batholith of British Columbia and
Wrangellia in south-central Alaska (Hildebrand andWhalen 2021
(this issue)). Examination of the 12-4 Ma Central Range orogeny
of Papua, New Guinea (Cloos et al. 2005), shows that about 25 km
of denudation occurred on the northern slope of the highest
mountains and plateaux (Fig. 17), which rise to nearly 5 km eleva-
tion and contain many post-collisional intrusions rich in Cu and

Au (Doucette 2000; McMahon 2000, 2001; Cloos and Housh 2008).
Sediment transport was into the back-arc region.

The suture zone preserved?
The southernmost part of the Sierran batholith in the Teha-

chapi and San Emigdio mountains, which abut the San Andreas
and Garlock faults to the south (Supplementary Fig. S32), is domi-
nated by amphibolite- and granulite-grade metamorphic rocks
with paleopressures as high as 10–11 kbar (Pickett and Saleeby 1993;
Chapman et al. 2012). Structurally beneath the high-grade rocks
(Fig. 18), which have ages ranging from 136 to 101 Ma, and separated
from them by the Rand fault, is the San Emigdio schist (Chapman
and Saleeby 2012), which contains detrital zircons ranging mostly
from 120 to 100 Ma (Jacobson et al. 2011). The few zircons younger
than 100 Ma appear to be metamorphic (A. Chapman and C. Jacob-
son, personal communication, 2020), which indicates that, at an
age of 100 Ma, the San Emigdio schist is older than, and unrelated
to, the Pelona–Orocopia–Swakane schists elsewhere. Precambrian
detrital zircons are plentiful within the schist, comprising�25% of
the zircons in one sample (Fig. 18), which suggests that these rocks
were depositedwithin the seaway anddonot representmaterial de-
posited on the open seafloor to the west, where there was no likely
source for Precambrian zircons.
According to Chapman et al. (2011), the San Emigdio schist

comprises over 75% interbedded metapsammite and metasand-
stone with much lesser amounts of metabasalt and talc–actinolite
schist. They documented peakmetamorphic assemblages as garnet +
plagioclase + biotite + quartz 6 muscovite 6 kyanite with limited
melt pods near the top. Paleopressures range from 11 to 9 kbar and
paleotemperatures were inverted, ranging from 600 °C near the
exposed base to 700 °C at the top.
The Antimony Peak tonalite sits above the Rand thrust with

paleopressures of 10 kbar and magmatic epidote (Chapman et al.
2011). U–Pb analyses of zircons revealed 136–135 Ma cores sur-
rounded by 103–99 Ma rims (Chapman et al. (2012), which along
with the results of Chin et al. (2013) from granulite xenoliths,
described earlier, constrain peak metamorphism at about 101–
100 Ma.
The schist structurally overlies a terrane comprising 5–10 km

long slabs of marble, quartzite, and metasandstone, as well as a
variety of schists (Chapman and Saleeby 2012). Their geologic
map (Fig. 18) lists the large 92–88 Ma Lebec Granodiorite as hav-
ing paleopressures of 3 kbar, which implies a high rate of exhu-
mation, one similar to that seen elsewhere along the orogen
(Hildebrand and Whalen 2021, this issue). Chapman et al. (2011)
argued that deposition, deep subduction, and exhumation to
mid-crustal depths took <3 million years, whereas Chapman
et al. (2012) suggested exhumation of rocks from 9–11 kbar at
98 Ma to mid-crustal levels by about 95 Ma. These exhumation
rates are typical of slab break-off at the end of collision when the
cratonic lower plate is freed of its oceanic anchor and rises rap-
idly to exhume the collision zone (Hildebrand andWhalen 2017).
Considering the above, we suggest that the San Emigdio Moun-

tains exposes an oblique north–south section through the 100 Ma
suture consisting of (1) lower plate North American Paleozoic
basement slabs, some as long as 10 km, of quartzite, metasand-
stone, schist, and marble, upward through (2) the San Emigdio
schists, likely remnants of material eroded from the arc and de-
posited within the seaway, and finally up into (3) the lowermost
part of the upper-plate arc, which expose abundant Early Creta-
ceous plutons and gneisses, with some as young as 101 Ma, at
�11 kbar paleopressures. By at least 92 Ma, rocks of the suture
were exhumed to 3 kbar.
In either our collisional model or in the eastward subduction

and underplate model presented by Chapman et al. (2012), the
�10 kbar paleopressures for the schist correspond to the base
of the Sierran crust at 100 Ma. Thus, at that time the crust
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beneath the Sierra Nevadan arc was about equal to, or slightly
less than, the average thickness of continental crust (Hacker
et al. 2015). This negates models that require a thickened arc crust
to remove fractionated cumulates formed during arcmagmatism
(Ducea and Saleeby 1998; DeCelles et al. 2009) and supports the
Hildebrand et al. (2018) model that most continental and oceanic
arcs are built on normal to thinned crust.
The San Emigdio collisional suture and surrounding rocks were

rotated clockwise from a more northerly orientation after 80 Ma
(Kanter and McWilliams 1982) and the entire southerly Sierran Ne-
vada batholith and basal suture were uplifted during the east–west-
trending Late Cretaceous Laramide orogeny (Wood and Saleeby
1998; Chapman et al. 2012), which we have argued was also colli-
sional (Hildebrand and Whalen 2017; Hildebrand 2015). When dis-
placements on the faults of southern California are restored (Powell
1993; Nourse 2002), the similar Pelona–Orocopia schists form an
east–west band extending across much of southern California and
western Arizona, and so they might in some cases represent suture
zone rocks rather than the product of east-directed flat subduction
as commonly hypothesized (Grove et al. 2003; DeCelles et al. 2009;
Jacobson et al. 2011; Chapman et al. 2011, 2012).

Sevier fold-thrust belt
If the complex zone described above represents the basal

suture of the Sierran arc system, then where to the east does it
surface? In other words, where is the easternmost exposure of
the contact zone?

Although there are many thrust faults known in the Great Ba-
sin region east of the Sierras, temporal data suggest that the zone
could lie well to the east in eastern California, the Spring Moun-
tains just west of Las Vegas, and northward into Utah and Idaho,
where the thrusts are collectively known as the Sevier fold-thrust
belt (Armstrong 1968). Hildebrand (2014) pointed out that the old-
est thrusts of the Sevier belt were synchronous with the first
deformational thickening to affect the North American platform
terrace.
In southeastern California and southern Nevada, and as described

in the Mojave Desert section of the paper, a sequence of 100.56 2 Ma
basaltic lavas and epiclastic rocks overlain by plagioclase porphyritic
ignimbrites and lavas known as the Delfonte volcanics (Fig. 9), was
detached, folded, and transported eastward on thrust faults (Fleck
et al. 1994; Walker et al. 1995) prior to the emplacement of the
98–90 Ma Teutonia batholith. Other allochthons in the area carry
deformed plutons dated between 150 and 140Ma (Walker et al. 1995).
The earliest of the Utah thrusts, the Canyon Range thrust, was

emplaced at about 125 Ma (DeCelles 2004; DeCelles and Coogan
2006) and the resultant synorogenic foredeep was filled during
the Aptian–Albian mainly by the Cedar Mountain and San Pitch
formations (Lawton et al. 2010) and so predates the 100 Ma colli-
sion. The thrust was unconformably overlain and sealed by upper
Albian? – Cenomanian conglomerate (DeCelles and Coogan 2006;
Lawton et al. 2007).
The next youngest thrust system of south-central Utah, known

as the Pavant–Nebo thrust system, transported Neoproterozoic

Fig. 17. Modern topography and differences in depth of denudation in the Central Range orogen of Papua, New Guinea, modified from
Cloos et al. (2005), and illustrating �25 km exhumation on the opposite side of the orogen from the foreland. Large rivers have
transported most debris northward to the North Coast basin because the nearly 5 km high Central Range blocks drainage to the south.
We see this as a more modern example of the post-collisional sedimentation in the back-arc region, such as the <100 Ma Valle and Great
Valley rocks, caused by slab break-off and consequent exhumation of the hinterland belt. [Colour online.]
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Fig. 18. Simplified geological map of the San Emigdio Mountains (modified from Chapman and Saleeby 2012), where we infer 11–9 kbar
San Emigdio schist to represent deformed metasedimentary rocks of the Lower Cretaceous Cinco Lake arc trough caught between the pre-
100 Ma high-grade base of the Cinco Lake arc and lower plate North America comprising megaslabs of Paleozoic metasedimentary rocks.
Cenozoic faults, mainly related to compression adjacent to the San Andreas fault, are not shown as they appear to have little separation
(Chapman and Saleeby 2012) and only limited effect on the regional tectonostratigraphy. Schematic section in upper left (a) illustrates the
inferred geological relations. (b) Detrital zircon profiles illustrating the similarities of zircons in the Salt Creek pendant compared with a
composite of sandstones in the Death Valley region to the east from Chapman et al (2012). (c) Subfigure in lower right shows cumulative
distribution of detrital zircons from two samples of the San Emigdio schist replotted from Jacobson et al. (2011) and interpreted to
represent metasedimentary fill of the Cinko Lake arc trough. Note the presence of sparse Precambrian zircons, which were probably
derived from North America as opposed to open seafloor to the west of the arc. These relations all support our model for westward
subduction of the leading edge of the North American craton and its Lower Cretaceous sedimentary cover beneath the 140–100 Ma Cinko
arc. [Colour online.]
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metasedimentary rocks, Paleoproterozoic crystalline basement
of the Santequin complex (Nelson et al. 2002), and a Phanerozoic
sedimentary succession, eastward, and led to the development of
a large overturned, nearly recumbent anticline. The Pavant sec-
tor of the system deformed and elevated the Canyon Range
thrust into an antiformal culmination during its emplacement
(DeCelles and Coogan 2006). Zircon (U/Th)/He ages from the
Pavant–Nebo thrust sheets document emplacement and exhuma-
tion of the thrust sheets between 102 and 96 Ma (Pujols et al.
2020). Using detrital zircon He, they also found that active thrust
belt deformation was concurrent with sediment dispersal east-
ward into the Cenomanian Dakota Formation, the temporally
equivalent foredeep stratigraphic unit. Thus, the Pavant–Nebo
thrust system was active at about 100 Ma. To the south in south-
western Utah, the Iron Springs thrust was recently dated to be
about 100 Ma on the basis of 100.18 6 0.04 Ma zircons extracted
from a dacitic tuff intercalated with coarse syn- to post-orogenic
debris of the Iron Springs Formation (Quick et al. 2020).
In northern Utah, major thrust activity and cooling of the

�125 Ma Willard thrust also occurred at 105–95 Ma, which led to
increased subsidence to the east and deposition of the 100–96 Ma
Aspen and Frontier formations in the foreland basin (Yonkee
et al. 2019; Pujols et al. 2020). A thrust duplex of Paleoproterozoic
crystalline rocks known as the Farmington complex seemingly
sits on Archean basement of the Wyoming – Grouse Creek block
(Mueller et al. 2011; Yonkee et al. 2003). The band of Paleoprotero-
zoic crystalline rocks likely continues northward into Idaho,
where Paleoproterozoic crystalline basement occurs within the
Cabin –Medicine Lake thrust system just east of the Idaho batho-
lith (Skipp 1987) and the Tendoy thrust of southwestern Montana
(Skipp and Hait 1977; DuBois 1982).

Hi-fluxmagmatic events
Our data suggest that the so-called hi-flux magmatic events of

arcs (Gehrels et al. 2009) are not arc-related, but instead occur
from slab failure during collision. Some researchers recognized
that flare-ups coincide with episodes of crustal thickening (Ducea
and Barton 2007; Ducea et al. 2015) but interpreted the thicken-
ing to reflect retro-arc thrusting (DeCelles et al. 2009). Other
researchers (Ducea and Saleeby 1998; Jagoutz and Behn 2013; Lee
and Anderson 2015) suggest crustal thickening in the arc by mag-
matic underplating, commonly accompanied by foundering of
dense cumulates, but these models fail because the arc is under-
plated by the lower plate lithosphere prior to the hi-flux event
so there is insufficient time for magmatic underplating. In our
model (Hildebrand and Whalen 2017), arc-continent collision
shuts down arc magmatism, and due to the buoyancy contrast
between the continental and oceanic lithosphere, the subducting
plate fails and the oceanic sector, possibly plus some thin litho-
sphere of the rifted margin, sinks into the mantle, where the
upper basaltic–gabbroic part of the oceanic slabmelts to produce
post-collisional magmatism. The change from arc magmatism to
slab failure magmatism happens rapidly, typically within a cou-
ple of million years, so there is no time, given the low thermal
diffusivity of rocks, for underthrust material to heat up and melt
sufficiently to produce the quantity of observedmagmatism.
The key difference between our model and those of others is

that we recognize the post-collisional nature of the hi-flux mag-
matism and relate it to melting of the subducting slab. We uti-
lized the timing and composition of the magmatism to resolve
the crustal composition paradox because we maintain that most
magmas are not arc derived (as commonly hypothesized), but
instead formed during the waning stages of collision and conse-
quent slab failure (Hildebrand et al. 2018). Because the batholiths
typically have silica contents >60% and are derived directly from
the mantle, we argue that they create large amounts of continen-
tal crust. In fact, on the basis of detrital zircon peaks that largely
coincide with periods of continental amalgamation (Condie et al.

2009, 2017; Hawkesworth et al. 2010, 2016), we suggest that post-
collisional magmatism might have created more than half of all
continental crust.

Conclusions

1. The Peninsular Ranges orogen is a �100 Ma orogenic belt
that extends from Mexico to Alaska, but here we discussed
only the Peninsular Ranges, Mojave, and Sierran sectors of
the orogen. The orogen formed when a marine trough, open
for about 40million years along the western margin of North
America, closed by westerly subduction, which pulled a pas-
sive continental margin, capped by a west-facing Albian car-
bonate platform built on the eastern North American side of
the trough, beneath an Early Cretaceous arc complex, built
on the western side of the trough (Fig. 19).

2. About a million years or so following the collision, the colli-
sional hinterland was exhumed and intruded by a swarm of

Fig. 19. Our tectonic plate scale model for the Peninsular Ranges
orogeny involves closure of a Lower Cretaceous seaway by west-
directed subduction and arc magmatism from �140 Ma until the
collision of the arc with North America at 100 Ma. The competing
buoyancies of the oceanic and cratonic lithosphere led to rapid
tearing and break-off of the subducted plate and an influx of
99–84 Ma post-collisional magmatism during exhumation of the
orogenic hinterland. During exhumation and plutonism, between
99–90 Ma molasse was shed westward into the old back-arc region.
[Colour online.]
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tonalite–granodiorite–granite plutons. The timing suggests
that the plutons and exhumation formed in tandem when
the oceanic lithosphere broke off from the partially sub-
ducted North American plate (Fig. 19).

3. The large mid-Cretaceous batholiths of the Peninsular Ranges
and Sierra Nevada are composed of two contrasting magmatic
suites derived from distinct mantle sources and emplaced at
different times. The older arc suite represents a generally
low-standing marine arc built on thinned lithosphere over a
westward-dipping subduction zone, whereas the younger
suite was post-collisional and invaded the orogenic hinter-
land during exhumation due to break-off and melting of the
subducting slab.

4. Models that utilize Andino-type or cyclic hi-magmatic flux
models for the development of Cordilleran batholiths, fail to
recognize that the transition from arc magmatism to post-
collisional hi-flux magmatism occurred rapidly, perhaps in
about a million years, so that there is insufficient time to
thicken the crust by underplating or for heat transfer by con-
duction to melt underthrust cratonic material.

5. The post-collisional magmas appear to have been derived
from melting of the basaltic–gabbroic upper part of the sub-
ducted oceanic lithosphere augmented by assimilation due
to fractional melting of the SCLM as they rose toward the
crust. Thus, slab break-off magmas have trace element con-
centrations and ratios similar to slab window rocks, but
where they rise through old and enriched cratonic litho-
sphere they acquire an enriched radiogenic signature.

6. There is no compelling evidence along the western edge of
the Peninsular Ranges and Sierra Nevada for a fore-arc basin
or accretionary prism during Early Cretaceous arc magma-
tism. Instead, voluminous quantities of material were shed
westward into the back-arc region after the 100 Ma collision
and termination of arc magmatism, when abundant detrital
zircons from the 100–90 Ma post-collisional plutons docu-
ment rapid exhumation of the orogenic hinterland.

7. An implication of our model is that retro-arc models for the
Sevier thrust-fold belt should be reconsidered, as there was
no eastward subduction beneath North America at about
120 Ma when the Sevier thrusting initiated. We claim there is
compelling evidence that the 130–100 Ma arc magmatism in
the Peninsular Ranges and Sierra Nevada were built above
westward, not eastward, subduction zones (Fig. 19).

8. In the San Emigdio mountains, the �100 Ma San Emigdio
schist, with an inverse temperature gradient and paleopres-
sures of 11–9 kbar, lies between a basal terrane comprising
slabs, up to 10 km long, of marble, quartzite, schist andmeta-
sandstone, and the base of the Sierran arc, consisting of
136–101 Ma plutons and gneisses originally at pressures of
10–11 kbar. We interpret these relations to represent an
oblique cross section through the uplifted 100 Ma collisional
suture zone, which was exhumed to mid crustal depths by
�95 Ma. Their paleopressures suggest Sierran crust of nor-
mal, or lesser, thickness.

9. The so-called “flare-up” events in Cordilleran arcs are the
result of collision followed by slab break-off magmatism.

10. In Part II, we explore the more northerly continuation of the
Peninsular Ranges orogen and demonstrate that overall it
extends from southern Mexico to Alaska, with geological
relations and timing in the northern sector similar to the Pe-
ninsular Ranges and Sierra Nevada.
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